80 research outputs found

    An Efficient Certificate-Based Designated Verifier Signature Scheme

    Get PDF
    Certificate-based public key cryptography not only solves certificate revocation problem in traditional PKI but also overcomes key escrow problem inherent in identity-based cryptosystems. This new primitive has become an attractive cryptographic paradigm. In this paper, we propose the notion and the security model of certificate-based designated verifier signatures (CBDVS). We provide the first construction of CBDVS and prove that our scheme is existentially unforgeable against adaptive chosen message attacks in the random oracle model. Our scheme only needs two pairing operations, and the signature is only one element in the bilinear group G1. To the best of our knowledge, our scheme enjoys shortest signature length with less operation cost

    Efficient identity based signcryption scheme and solution of key-escrow problem

    Get PDF
    In cryptography for sending any information from sender to receiver, we have to ensure about the three types of security policies i.e. integrity, confidentiality and authentication. For confidentiality purpose, encryption-decryption technique is used and for authentication purpose digital signature is used, so to ensure this three properties, first sender encrypt the message and then sign the message. Same process done at the receiver end that means first message is decrypted then verified, so it's two step process that increases the communication as well as computation cost. But in many real life applications where more speed and less cost is required like e-commerce applications, we can't use signature then encryption technique, so signcryption is the cryptographic primitives that provides signature as well as encryption at the same time on a single step. First signcryption scheme is proposed by Yullian Zheng in 1997, Since then many signcryption scheme is proposed based on elliptic discrete logarithm problem (ECDLP) , Bilinear pairing, Identity Based and certificateless environment. Many of the Signcryption scheme used Random Oracle Model for their security proofs and few are based on standard model

    Certificateless Proxy Signature from RSA

    Get PDF
    Although some good results were achieved in speeding up the computation of pairing function in recent years, it is still interesting to design efficient cryptosystems with less bilinear pairing operation. A proxy signature scheme allows a proxy signer to sign messages on behalf of an original signer within a given context. We propose a certificateless proxy signature (CLPS) scheme from RSA and prove its security under the strongest security model where the Type I/II adversary is a super Type I/II adversary

    多人数署名の証明可能安全性に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    Insecurity of a Certificate-free Ad Hoc Anonymous Authentication

    Get PDF
    Abstract The ring signature scheme is a simplified group signature scheme for no manager while preserving unconditionally anonymous of the signer. Certificateless cryptography is introduced for eliminating the use of certificates in Public Key Infrastructure and solving the key-escrow problem in ID-based cryptogratography. Recently, Qin et al. proposed the first RSA-based certificateless ring signature scheme which was proved unforgeable in random oracle model. In this paper, we demonstrated that this scheme was not secure against the Type I adversary

    A Multireceiver Certificateless Signcryption (MCLS) Scheme

    Get PDF
    User authentication and message confidentiality are the basic security requirements of high-end applications such as multicast communication and distributed systems. Several efficient signature-then-encrypt cryptographic schemes have been proposed to offer these security requirements with lower computational cost and communication overhead. However, signature-then-encryption techniques take more computation time than signcryption techniques. Signcryption accomplishes both digital signature and public key encryption functions in a single logical step and at a much lower cost than ``signature followed by encryption.\u27\u27 Several signcryption schemes based on bilinear pairing operations have been proposed. Similarly, anonymous multi-receiver encryption has recently risen in prominence in multicast communication and distributed settings, where the same messages are sent to several receivers but the identity of each receiver should remain private. Anonymous multi-receiver encryption allows a receiver to obtain the plaintext by decrypting the ciphertext using their own private key, while their identity is kept secret to anyone, including other receivers. Among the Certificateless Multi-receiver Encryption (CLMRE) schemes that have been introduced, Hung et al. proposed an efficient Anonymous Multireceiver Certificateless Encryption (AMCLE) scheme ensuring confidentiality and anonymity based on bilinear pairings and is secure against IND-CCA and ANON-CCA. In this paper, we substantially extend Hung et al.’s multireceiver certificateless encryption scheme to a Multireceiver Certificateless Signcryption (MCLS) scheme that provides confidentiality along with authentication. We show that, as compared to Hung et al.’s encryption scheme, our signcryption scheme requires only three additional multiplication operations for signcryption and unsigncryption phases. Whereas, the signcryption cost is linear with the number of designated receivers while the unsigncryption cost remains constant for each designated receiver. We compare the results with other existing single receiver and multireceiver signcryption schemes in terms of number of operations, exemption of key escrow problem, and public key settings. The scheme proposed in this paper is more efficient for single and multireceiver signcryption schemes while providing exemption from the key escrow problem, and working in certificateless public key settings

    Strongly Unforgeable Certificateless Signature Resisting Attacks from Malicious-But-Passive KGC

    Get PDF
    In digital signature, strong unforgeability requires that an attacker cannot forge a new signature on any previously signed/new messages, which is attractive in both theory and practice. Recently, a strongly unforgeable certificateless signature (CLS) scheme without random oracles was presented. In this paper, we firstly show that the scheme fails to achieve strong unforgeability by forging a new signature on a previously signed message under its adversarial model. Then, we point out that the scheme is also vulnerable to the malicious-but-passive key generation center (MKGC) attacks. Finally, we propose an improved strongly unforgeable CLS scheme in the standard model. The improved scheme not only meets the requirement of strong unforgeability but also withstands the MKGC attacks. To the best of our knowledge, we are the first to prove a CLS scheme to be strongly unforgeable against the MKGC attacks without using random oracles

    Lightweight identity based online/offline signature scheme for wireless sensor networks

    Get PDF
    Data security is one of the issues during data exchange between two sensor nodes in wireless sensor networks (WSN). While information flows across naturally exposed communication channels, cybercriminals may access sensitive information. Multiple traditional reliable encryption methods like RSA encryption-decryption and Diffie–Hellman key exchange face a crisis of computational resources due to limited storage, low computational ability, and insufficient power in lightweight WSNs. The complexity of these security mechanisms reduces the network lifespan, and an online/offline strategy is one way to overcome this problem. This study proposed an improved identity-based online/offline signature scheme using Elliptic Curve Cryptography (ECC) encryption. The lightweight calculations were conducted during the online phase, and in the offline phase, the encryption, point multiplication, and other heavy measures were pre-processed using powerful devices. The proposed scheme uniquely combined the Inverse Collusion Attack Algorithm (CAA) with lightweight ECC to generate secure identitybased signatures. The suggested scheme was analyzed for security and success probability under Random Oracle Model (ROM). The analysis concluded that the generated signatures were immune to even the worst Chosen Message Attack. The most important, resource-effective, and extensively used on-demand function was the verification of the signatures. The low-cost verification algorithm of the scheme saved a significant number of valued resources and increased the overall network’s lifespan. The results for encryption/decryption time, computation difficulty, and key generation time for various data sizes showed the proposed solution was ideal for lightweight devices as it accelerated data transmission speed and consumed the least resources. The hybrid method obtained an average of 66.77% less time consumption and up to 12% lower computational cost than previous schemes like the dynamic IDB-ECC two-factor authentication key exchange protocol, lightweight IBE scheme (IDB-Lite), and Korean certification-based signature standard using the ECC. The proposed scheme had a smaller key size and signature size of 160 bits. Overall, the energy consumption was also reduced to 0.53 mJ for 1312 bits of offline storage. The hybrid framework of identity-based signatures, online/offline phases, ECC, CAA, and low-cost algorithms enhances overall performance by having less complexity, time, and memory consumption. Thus, the proposed hybrid scheme is ideally suited for a lightweight WSN
    corecore