22 research outputs found

    Provably Efficient Adaptive Scheduling for Parallel Jobs

    Get PDF
    Scheduling competing jobs on multiprocessors has always been an important issue for parallel and distributed systems. The challenge is to ensure global, system-wide efficiency while offering a level of fairness to user jobs. Various degrees of successes have been achieved over the years. However, few existing schemes address both efficiency and fairness over a wide range of work loads. Moreover, in order to obtain analytical results, most of them require prior information about jobs, which may be difficult to obtain in real applications. This paper presents two novel adaptive scheduling algorithms -- GRAD for centralized scheduling, and WRAD for distributed scheduling. Both GRAD and WRAD ensure fair allocation under all levels of workload, and they offer provable efficiency without requiring prior information of job's parallelism. Moreover, they provide effective control over the scheduling overhead and ensure efficient utilization of processors. To the best of our knowledge, they are the first non-clairvoyant scheduling algorithms that offer such guarantees. We also believe that our new approach of resource request-allotment protocol deserves further exploration. Specifically, both GRAD and WRAD are O(1)-competitive with respect to mean response time for batched jobs, and O(1)-competitive with respect to makespan for non-batched jobs with arbitrary release times. The simulation results show that, for non-batched jobs, the makespan produced by GRAD is no more than 1.39 times of the optimal on average and it never exceeds 4.5 times. For batched jobs, the mean response time produced by GRAD is no more than 2.37 times of the optimal on average, and it never exceeds 5.5 times.Singapore-MIT Alliance (SMA

    Automatic Static Cost Analysis for Parallel Programs

    Get PDF
    Abstract. Static analysis of the evaluation cost of programs is an extensively studied problem that has many important applications. However, most automatic methods for static cost analysis are limited to sequential evaluation while programs are increasingly evaluated on modern multicore and multiprocessor hardware. This article introduces the first automatic analysis for deriving bounds on the worst-case evaluation cost of parallel first-order functional programs. The analysis is performed by a novel type system for amortized resource analysis. The main innovation is a technique that separates the reasoning about sizes of data structures and evaluation cost within the same framework. The cost semantics of parallel programs is based on call-by-value evaluation and the standard cost measures work and depth. A soundness proof of the type system establishes the correctness of the derived cost bounds with respect to the cost semantics. The derived bounds are multivariate resource polynomials which depend on the sizes of the arguments of a function. Type inference can be reduced to linear programming and is fully automatic. A prototype implementation of the analysis system has been developed to experimentally evaluate the effectiveness of the approach. The experiments show that the analysis infers bounds for realistic example programs such as quick sort for lists of lists, matrix multiplication, and an implementation of sets with lists. The derived bounds are often asymptotically tight and the constant factors are close to the optimal ones

    Easy PRAM-based High-performance Parallel Programming with ICE

    Get PDF
    A poster of this paper will be presented at the 25th International Conference on Parallel Architecture and Compilation Technology (PACT ’16), September 11-15, 2016, Haifa, Israel.Parallel machines have become more widely used. Unfortunately parallel programming technologies have advanced at a much slower pace except for regular programs. For irregular programs, this advancement is inhibited by high synchronization costs, non-loop parallelism, non-array data structures, recursively expressed parallelism and parallelism that is too fine-grained to be exploitable. We present ICE, a new parallel programming language that is easy-to-program, since: (i) ICE is a synchronous, lock-step language; (ii) for a PRAM algorithm its ICE program amounts to directly transcribing it; and (iii) the PRAM algorithmic theory offers unique wealth of parallel algorithms and techniques. We propose ICE to be a part of an ecosystem consisting of the XMT architecture, the PRAM algorithmic model, and ICE itself, that together deliver on the twin goal of easy programming and efficient parallelization of irregular programs. The XMT architecture, developed at UMD, can exploit fine-grained parallelism in irregular programs. We built the ICE compiler which translates the ICE language into the multithreaded XMTC language; the significance of this is that multi-threading is a feature shared by practically all current scalable parallel programming languages. As one indication of ease of programming, we observed a reduction in code size in 7 out of 11 benchmarks vs. XMTC. For these programs, the average reduction in number of lines of code was when compared to hand optimized XMTC The remaining 4 benchmarks had the same code size. Our main result is perhaps surprising: The run-time was comparable to XMTC with a 0.76% average gain for ICE across all benchmarks.NSF award 116185

    A General Framework for Static Cost Analysis of Parallel Logic Programs

    Get PDF
    The estimation and control of resource usage is now an important challenge in an increasing number of computing systems. In particular, requirements on timing and energy arise in a wide variety of applications such as internet of things, cloud computing, health, transportation, and robots. At the same time, parallel computing, with (heterogeneous) multi-core platforms in particular, has become the dominant paradigm in computer architecture. Predicting resource usage on such platforms poses a difficult challenge. Most work on static resource analysis has focused on sequential programs, and relatively little progress has been made on the analysis of parallel programs, or more specifically on parallel logic programs. We propose a novel, general, and flexible framework for setting up cost equations/relations which can be instantiated for performing resource usage analysis of parallel logic programs for a wide range of resources, platforms, and execution models. The analysis estimates both lower and upper bounds on the resource usage of a parallel program (without executing it) as functions on input data sizes. In addition, it also infers other meaningful information to better exploit and assess the potential and actual parallelism of a system. We develop a method for solving cost relations involving the max function that arise in the analysis of parallel programs. Finally, we instantiate our general framework for the analysis of logic programs with Independent AndParallelism, report on an implementation within the CiaoPP system, and provide some experimental results. To our knowledge, this is the first approach to the cost analysis of parallel logic programs

    Doctor of Philosophy

    Get PDF
    dissertationIn the static analysis of functional programs, control- ow analysis (k-CFA) is a classic method of approximating program behavior as a infinite state automata. CFA2 and abstract garbage collection are two recent, yet orthogonal improvements, on k-CFA. CFA2 approximates program behavior as a pushdown system, using summarization for the stack. CFA2 can accurately approximate arbitrarily-deep recursive function calls, whereas k-CFA cannot. Abstract garbage collection removes unreachable values from the store/heap. If unreachable values are not removed from a static analysis, they can become reachable again, which pollutes the final analysis and makes it less precise. Unfortunately, as these two techniques were originally formulated, they are incompatible. CFA2's summarization technique for managing the stack obscures the stack such that abstract garbage collection is unable to examine the stack for reachable values. This dissertation presents introspective pushdown control-flow analysis, which manages the stack explicitly through stack changes (pushes and pops). Because this analysis is able to examine the stack by how it has changed, abstract garbage collection is able to examine the stack for reachable values. Thus, introspective pushdown control-flow analysis merges successfully the benefits of CFA2 and abstract garbage collection to create a more precise static analysis. Additionally, the high-performance computing community has viewed functional programming techniques and tools as lacking the efficiency necessary for their applications. Nebo is a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena. For efficient execution, Nebo exploits a version of expression templates, based on the C++ template system, which is a type-less, completely-pure, Turing-complete functional language with burdensome syntax. Nebo's declarative syntax supports functional tools, such as point-wise lifting of complex expressions and functional composition of stencil operators. Nebo's primary abstraction is mathematical assignment, which separates what a calculation does from how that calculation is executed. Currently Nebo supports single-core execution, multicore (thread-based) parallel execution, and GPU execution. With single-core execution, Nebo performs on par with the loops and code that it replaces in Wasatch, a pre-existing high-performance simulation project. With multicore (thread-based) execution, Nebo can linearly scale (with roughly 90% efficiency) up to 6 processors, compared to its single-core execution. Moreover, Nebo's GPU execution can be up to 37x faster than its single-core execution. Finally, Wasatch (the pre-existing high-performance simulation project which uses Nebo) can scale up to 262K cores
    corecore