35 research outputs found

    Authentication : can mobile environments be secured?

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references (leaves 29-32).A mobile system is defined as a network in which one or more of the interconnection links is a wireless medium. Wireless media include but are not limited to, cellular or radio transmissions, satellite services, and wireless computer networks. The fundamental operations of storage, processing, and transmission of information are undergoing such rapid improvement that the application of securing mobile systems cannot keep up with the rate of advance. This research analyzes security problems and investigates possible solutions that stem from the absence of a "fixed" link between the user and service provider in mobile systems. This research approaches all security issues from the authentication standpoint, i.e. the process of reliably verifying the identity of two parties in a communication channel. Once identities have been verified, the channel authenticity must be maintained. Mobile communication systems that utilize three systems, symmetric ciphers, public key systems, and zero-knowledge techniques, are shown to be highly secure. The level security is not degraded due to the absence of a "fixed" link between the user and service provider

    Investigating in Security Solutions - Can Qualified Electronic Signatures be Profitable for Mobile Operators?

    Get PDF
    Electronic signatures are an established method to ensure the integrity and accountability of electronic transactions. Realizing their potential, the European Parliament and the Council enacted the directive 1999/93/EC in 1999, providing legal requirements for a common introduction of electronic signatures in Europe. However, so far the signature market has failed miserably. Mobile electronic signatures are often seen as a potential and promising way to provide market acceptance for electronic signatures. This paper proposes an infrastructure for qualified mobile electronic signatures that does not require the mobile operator to act as a certificate service provider (CSP). The user can freely choose a CSP and add the signature functionality along with the required certificates later on demand. However, mobile operators will only invest in this infrastructure, if they expect a return on investment (ROI). Therefore, based on our proposed infrastructure and using distinct scenarios, we conducted an investment analysis for mobile operators forecasting the net present value and the internal rate of return of the investment. Our forecast shows that issuing signature capable smart cards can be quite profitable for a mobile operator

    Privacy preserving protocols for smart meters and electric vehicles

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2015Actualmente existe a tendência para se adicionar mais inteligência em vários pontos da rede elétrica, permitindo uma comunicação bidireccional entre a empresa fornecedora de energia eléctrica e as nossas casas. Ao longo dos próximos anos, os contadores de energia nas nossas casas serão gradualmente substituídos por um equipamento com mais capacidades, denominado medidor inteligente. Os medidores inteligentes podem colher informações sobre os gastos de energia em tempo real, e encaminhar os dados para o fornecedor. Além disso, podem receber comandos do fornecedor (ou outros intervenientes) e agir em conformidade, nomeadamente através da interacção com equipamentos locais (por exemplo, ar condicionado ou congelador) para ajustar o seu modo de operação, diminuindo temporariamente o consumo de energia. Os medidores inteligentes podem ainda apoiar a produção local de energia (com painéis solares ou geradores eólicos) e o seu armazenamento (através de um banco de baterias ou veículo eléctrico), sendo necessário haver coordenação entre a sua operação e as empresas fornecedoras de energia eléctrica. Estes medidores, quando coordenados de uma forma apropriada, podem permitir uma redução dos picos globais de consumo. Deste modo evitam investimentos na rede energética direccionados para lidar com estas condições extremas, que tendem a ocorrer durante o horário laboral. A evolução no uso de veículos eléctricos irá gerar também um grande consumo de energia. Caso todos os veículos se tornem eléctricos, a rede actual não tem capacidade para lidar com o enorme pico gerado. No entanto, estes veículos poderão também ter a capacidade de transferir para a rede parte da sua energia, o que significa que, poderão ser usados em caso de necessidade para colmatar flutuações no consumo de energia (juntamente com outras fontes alternativas de geração). Esta coordenação, quando eficiente, pode permitir grandes vantagens em situações limite, como por exemplo quando há um fornecimento reduzido de energia, em que os medidores podem desactivar total ou parcialmente os aparelhos domésticos, permitindo uma melhor distribuição de energia por todos, priorizando, se necessário, certos locais como por exemplo hospitais. Como esperado, este tipo de configuração é propenso a muitas formas de ataque, desde a espionagem de comunicações até à manipulação física dos medidores inteligentes. Por isso, é necessário desenvolver protocolos seguros que possam ser usados para proteger os dispositivos e aplicações que irão operar na rede eléctrica futura. Este projecto em particular, desenvolve uma solução que protege as comunicações entre o medidor inteligente e a empresa distribuidora de energia no que diz respeito aos ataques à privacidade. Nestes ataques, o adversário obtém informação sobre o que o utilizador está a fazer em sua casa, monitorizando em tempo real a informação que é transmitida pelo medidor inteligente. Nos últimos anos tem-se assistido igualmente a uma evolução rápida nas tecnologias de transferência de energia sem fios, existindo actualmente alguns protótipos em funcionamento, como o carregamento de baterias em autocarros eléctricos numa universidade da Coreia do Sul. Uma eventual utilização generalizada desta tecnologia obriga à definição de novas formas de pagamento, possibilitando que os veículos eléctricos se possam abastecer em movimento. Se existir um protocolo demasiado simples que faça esta tarefa, pode levar a que o condutor seja identificado quando e onde carregar as baterias do seu veículo, algo que não acontece com um tradicional abastecimento de combustível pago com notas ou moedas. Este projecto lida com duas vertentes relacionadas que tratam da aferição do consumo de energia. Uma é baseada nos contadores inteligentes das casas, e outra nos “contadores” em veículos (mais concretamente, a forma de pagamento da energia transferida sem fios para um veículo em movimento). Apresentam-se diferentes técnicas/algoritmos já propostos que podem contribuir para uma solução, mas que apesar disso não conseguem atingir todos os requisitos e funcionalidades pretendidas de forma isolada. Estabelece-se também uma relação com o trabalho já realizado que utiliza tais técnicas. É estudado um protocolo especifico, o Low Overhead PrivAcy (LOPA), que organiza vários medidores num grupo. Em cada grupo é gerada secretamente uma chave entre cada medidor do grupo, depois é criada a partir dessa chave uma outra chave, que é somada a cada medição que cada medidor envia para um agregador, sem que ninguém consiga ver o valor da medição individual (devido à chave). O agregador, ao somar todas as medições de todos os medidores de um grupo, obtém o valor total de consumo de todos os medidores. O agregador, no entanto, não consegue saber cada medição individual, devido ao modo como a chave é gerada, garantindo a privacidade de cada casa. Este protocolo é explicado em detalhe, implementado e avaliado. São propostos também três protocolos para o pagamento da transferência de energia, que permitem manter o anonimato de um veículo, evitando que se saiba quando ou onde este circula. Os protocolos também lidam com ineficiências de transmissão, assegurando uma rapidez, simplicidade e segurança adequadas para serem aplicados em carros em movimento a velocidades habituais de circulação. Um dos protocolos permite uma transferência de energia pós-paga, e os outros dois usam uma modalidade de pré-pagamento, um com contas temporárias e o outro com dinheiro digital. Estes protocolos baseiam-se num conjunto de mensagens que empregam técnicas como assinaturas digitais (para garantir a integridade e autenticação das comunicações), técnicas de cifra, dinheiro digital, ou entidades terceiras confiáveis para permitir a confidencialidade. Pretende-se que seja assegurada a segurança do pagamento, ao mesmo tempo que é permitido ao ponto de carregamento identificar o responsável pelo veículo, em caso de incumprimento. O dinheiro digital e o protocolo de perfis pseudo-anónimos foram implementados e avaliados em duas plataformas diferentes. Os resultados experimentais foram muito satisfatórios, dando indicações de que estes protocolos poderiam ser utilizados na prática.There is currently a trend to add more intelligence to various points of the electric grid, thus enabling a bidirectional communication path between the electrical utility company and our homes, by upgrading the existing components along the way. For example, the metering devices in our homes will be gradually replaced with a more capable equipment, called smart meter. Smart meters can collect information about energy spending in real-time, and forward this data to the utility. Moreover, they can receive information from the utility (or other operators) and act on it, for instance, by interacting with local equipments (e.g., air conditioner or refrigerator) to adjust their operation mode (e.g., make them decrease the energy use). Smart meters can also support local energy production (e.g., solar panels or windmills) and storage (e.g., batteries), by coordinating its operation with the utility companies. As expected, this sort of setting is prone to many forms of attack, ranging from eavesdropping on the communications to the physical tampering of the smart meters. Therefore, it is necessary to develop secure protocols that can be used to protect the devices and applications that will be operating in this future smart grid. In particular, in this project we study and evaluate a solution that protects the communications between the smart meter and the electrical company with respect to attacks on privacy. For instance, it addresses a form of attack where the adversary learns information about what a person is doing at home by monitoring the messages transmitted by the smart meter in real-time. In recent years there have been rapid developments in Wireless Power Transfer technology (WPT). There are currently some prototypes in operation, such as charging batteries in electric buses at a university in South Korea. In the event of a widespread use of this technology, it is required that new forms of accounting and payment of energy are established. This project proposes a protocol for the payment of energy transfer that ensures the anonymity of the vehicle, precluding attacks that attempt to determine where it circulates. The protocol also handles transmission inefficiencies, ensuring a fast, simple and adequate application in cars moving at normal speeds of movement

    SECURITY AND PRIVACY ISSUES IN MOBILE NETWORKS, DIFFICULTIES AND SOLUTIONS

    Get PDF
    Mobile communication is playing a vital role in the daily life for the last two decades; in turn its fields gained the research attention, which led to the introduction of new technologies, services and applications. These new added facilities aimed to ease the connectivity and reachability; on the other hand, many security and privacy concerns were not taken into consideration. This opened the door for the malicious activities to threaten the deployed systems and caused vulnerabilities for users, translated in the loss of valuable data and major privacy invasions. Recently, many attempts have been carried out to handle these concerns, such as improving systems’ security and implementing different privacy enhancing mechanisms. This research addresses these problems and provides a mean to preserve privacy in particular. In this research, a detailed description and analysis of the current security and privacy situation in the deployed systems is given. As a result, the existing shortages within these systems are pointed out, to be mitigated in development. Finally a privacy preserving prototype model is proposed. This research has been conducted as an extensive literature review about the most relevant references and researches in the field, using the descriptive and evaluative research methodologies. The main security models, parameters, modules and protocols are presented, also a detailed description of privacy and its related arguments, dimensions and factors is given. The findings include that mobile networks’ security along with users are vulnerable due to the weaknesses of the key exchange procedures, the difficulties that face possession, repudiation, standardization, compatibility drawbacks and lack of configurability. It also includes the need to implement new mechanisms to protect security and preserve privacy, which include public key cryptography, HIP servers, IPSec, TLS, NAT and DTLS-SRTP. Last but not least, it shows that privacy is not absolute and it has many conflicts, also privacy requires sophisticated systems, which increase the load and cost of the system.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Hierarchical Group Based Mutual Authentication and Key Agreement for Machine Type Communication in LTE and Future 5G Networks

    Get PDF
    In view of the exponential growth in the volume of wireless data communication among heterogeneous devices ranging from smart phones to tiny sensors across a wide range of applications, 3GPP LTE-A has standardized Machine Type Communication (MTC) which allows communication between entities without any human intervention. The future 5G cellular networks also envisage massive deployment of MTC Devices (MTCDs) which will increase the total number of connected devices hundredfold. This poses a huge challenge to the traditional cellular system processes, especially the traditional Mutual Authentication and Key Agreement (AKA) mechanism currently used in LTE systems, as the signaling load caused by the increasingly large number of devices may have an adverse effect on the regular Human to Human (H2H) traffic. A solution in the literature has been the use of group based architecture which, while addressing the authentication traffic, has their share of issues. This paper introduces Hierarchical Group based Mutual Authentication and Key Agreement (HGMAKA) protocol to address those issues and also enables the small cell heterogeneous architecture in line with 5G networks to support MTC services. The aggregate Message Authentication Code based approach has been shown to be lightweight and significantly efficient in terms of resource usage compared to the existing protocols, while being robust to authentication message failures, and scalable to heterogeneous network architectures

    Security in signalling and digital signatures

    Get PDF

    The sources and characteristics of electronic evidence and artificial intelligence

    Get PDF
    In this updated edition of the well-established practitioner text, Stephen Mason and Daniel Seng have brought together a team of experts in the field to provide an exhaustive treatment of electronic evidence and electronic signatures. This fifth edition continues to follow the tradition in English evidence text books by basing the text on the law of England and Wales, with appropriate citations of relevant case law and legislation from other jurisdictions
    corecore