415 research outputs found

    3D Printed Models of Complex Anatomy in Cardiovascular Disease

    Get PDF
    Three-dimensional (3D) printing technology has undergone rapid developments over the last decades. The application of 3D printing has reached beyond the engineering field to medicine, with research showing many applications in cardiovascular disease. Due to the complexity of the cardiovascular system, application of 3D printing technology has shown potential value to benefit patients with cardiovascular disease. This mini-review provides an overview of applications of 3D printing in cardiovascular disease, with evidence of some of examples using patient-specific 3D printed models in the two common cardiovascular diseases, aortic dissection and abdominal aortic aneurysm

    Translating Imaging Into 3D Printed Cardiovascular Phantoms: A Systematic Review of Applications, Technologies, and Validation.

    Get PDF
    Translation of imaging into 3-dimensional (3D) printed patient-specific phantoms (3DPSPs) can help visualize complex cardiovascular anatomy and enable tailoring of therapy. The aim of this paper is to review the entire process of phantom production, including imaging, materials, 3D printing technologies, and the validation of 3DPSPs. A systematic review of published research was conducted using Embase and MEDLINE, including studies that investigated 3DPSPs in cardiovascular medicine. Among 2,534 screened papers, 212 fulfilled inclusion criteria and described 3DPSPs as a valuable adjunct for planning and guiding interventions (n = 108 [51%]), simulation of physiological or pathological conditions (n = 19 [9%]), teaching of health care professionals (n = 23 [11%]), patient education (n = 3 [1.4%]), outcome prediction (n = 6 [2.8%]), or other purposes (n = 53 [25%]). The most common imaging modalities to enable 3D printing were cardiac computed tomography (n = 131 [61.8%]) and cardiac magnetic resonance (n = 26 [12.3%]). The printing process was conducted mostly by material jetting (n = 54 [25.5%]) or stereolithography (n = 43 [20.3%]). The 10 largest studies that evaluated the geometric accuracy of 3DPSPs described a mean bias <±1 mm; however, the validation process was very heterogeneous among the studies. Three-dimensional printed patient-specific phantoms are highly accurate, used for teaching, and applied to guide cardiovascular therapy. Systematic comparison of imaging and printing modalities following a standardized validation process is warranted to allow conclusions on the optimal production process of 3DPSPs in the field of cardiovascular medicine

    3D Printing and Engineering Tools Relevant to Plan a Transcatheter Procedure

    Get PDF
    Advance cardiac imaging techniques such as three-dimensional (3D) printing technology and engineering tools have experienced a rapid development over the last decade in many surgical and interventional settings. In presence of complex cardiac and extra-cardiac anatomies, the creation of a physical, patient-specific model is useful to better understand the anatomical spatial relationships and formulate the best surgical or interventional plan. Although many case reports and small series have been published over this topic, at the present time, there is still a lack of strong scientific evidence of the benefit of 3D models and advance engineering tools, including virtual and augmented reality, in clinical practice and only qualitative evaluation of the models has been used to investigate their clinical use. Patient-specific 3D models can be printed in many different materials including rigid, flexible and transparent materials, depending on their application. To plan interventional procedure, transparent materials may be preferred in order to better evaluate the device or stent landing zone. 3D models can also be used as an input for augmented and virtual reality application and advance fluido-dynamic simulation, which aim to support the interventional cardiologist before entering the cath lab. The aim of this chapter is to present an overview on how 3D printing, extended reality platforms and the most common computational engineering methodologies"finite element and computational fluid dynamics"are currently used to support percutaneous procedures in congenital heart disease (CHD), with examples from the scientific literature

    Patient-specific 3D printed model of biliary ducts with congenital cyst

    Get PDF
    Background: 3D printing has shown great promise in medical applications, with increasing reports in liver diseases. However, research on 3D printing in biliary disease is limited with lack of studies on validation of model accuracy. In this study, we presented our experience of creating a realistic 3D printed model of biliary ducts with congenital cyst. Measurements of anatomical landmarks were compared at different stages of model generation to determine dimensional accuracy. Methods: Contrast-enhanced computed tomography (CT) images of a patient diagnosed with congenital cyst in the common bile duct with dilated hepatic ducts were used to create the 3D printed model. The 3D printed model was scanned on a 64-slice CT scanner using the similar abdominal CT protocol. Measurements of anatomical structures including common hepatic duct (CHD), right hepatic duct (RHD), left hepatic duct (LHD) and the cyst at left to right and anterior to posterior dimensions were performed and compared between original CT images, the standard tessellation language (STL) image and CT images of the 3D model. Results: The 3D printing model was successfully generated with replication of biliary ducts and cyst. Significant differences in measurements of these landmarks were found between the STL and the original CT images, and the CT images of the 3D printed model and the original CT images (

    3D-printing techniques in a medical setting : a systematic literature review

    Get PDF
    Background: Three-dimensional (3D) printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. This paper summarizes the literature on surgical 3D-printing applications used on patients, with a focus on reported clinical and economic outcomes. Methods: Three major literature databases were screened for case series (more than three cases described in the same study) and trials of surgical applications of 3D printing in humans. Results: 227 surgical papers were analyzed and summarized using an evidence table. The papers described the use of 3D printing for surgical guides, anatomical models, and custom implants. 3D printing is used in multiple surgical domains, such as orthopedics, maxillofacial surgery, cranial surgery, and spinal surgery. In general, the advantages of 3D-printed parts are said to include reduced surgical time, improved medical outcome, and decreased radiation exposure. The costs of printing and additional scans generally increase the overall cost of the procedure. Conclusion: 3D printing is well integrated in surgical practice and research. Applications vary from anatomical models mainly intended for surgical planning to surgical guides and implants. Our research suggests that there are several advantages to 3D- printed applications, but that further research is needed to determine whether the increased intervention costs can be balanced with the observable advantages of this new technology. There is a need for a formal cost-effectiveness analysis

    Focal Spot, Spring 2004

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1096/thumbnail.jp

    Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education

    Get PDF
    Rapid prototyping has become an innovative method of fast and cost-effective production of three-dimensional models for manufacturing. Wide access to advanced medical imaging methods allows application of this technique for medical training purposes. This paper presents the feasibility of rapid prototyping technologies: stereolithography, selective laser sintering, fused deposition modelling, and three-dimensional printing for medical education. Rapid prototyping techniques are a promising method for improvement of anatomical education in medical students but also a valuable source of training tools for medical specialists. (Folia Morphol 2011; 70, 1: 1-4

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Focal Spot, Summer 2001

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1088/thumbnail.jp
    corecore