8,177 research outputs found

    A software framework for the development of projection-based augmented reality systems

    Get PDF
    Despite the large amount of methods and applications of augmented reality, there is little homogenization on the software platforms that support them. An exception may be the low level control software that is provided by some high profile vendors such as Qualcomm and Metaio. However, these provide fine grain modules for e.g. element tracking. We are more concerned on the application framework, that includes the control of the devices working together for the development of the AR experience. In this paper we present a software framework that can be used for the development of AR applications based on camera-projector pairs, that is suitable for both fixed, and nomadic setups.Peer ReviewedPostprint (author's final draft

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Mediating Human-Robot Collaboration through Mixed Reality Cues

    Get PDF
    abstract: This work presents a communication paradigm, using a context-aware mixed reality approach, for instructing human workers when collaborating with robots. The main objective of this approach is to utilize the physical work environment as a canvas to communicate task-related instructions and robot intentions in the form of visual cues. A vision-based object tracking algorithm is used to precisely determine the pose and state of physical objects in and around the workspace. A projection mapping technique is used to overlay visual cues on tracked objects and the workspace. Simultaneous tracking and projection onto objects enables the system to provide just-in-time instructions for carrying out a procedural task. Additionally, the system can also inform and warn humans about the intentions of the robot and safety of the workspace. It was hypothesized that using this system for executing a human-robot collaborative task will improve the overall performance of the team and provide a positive experience to the human partner. To test this hypothesis, an experiment involving human subjects was conducted and the performance (both objective and subjective) of the presented system was compared with a conventional method based on printed instructions. It was found that projecting visual cues enabled human subjects to collaborate more effectively with the robot and resulted in higher efficiency in completing the task.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    On Inter-referential Awareness in Collaborative Augmented Reality

    Get PDF
    For successful collaboration to occur, a workspace must support inter-referential awareness - or the ability for one participant to refer to a set of artifacts in the environment, and for that reference to be correctly interpreted by others. While referring to objects in our everyday environment is a straight-forward task, the non-tangible nature of digital artifacts presents us with new interaction challenges. Augmented reality (AR) is inextricably linked to the physical world, and it is natural to believe that the re-integration of physical artifacts into the workspace makes referencing tasks easier; however, we find that these environments combine the referencing challenges from several computing disciplines, which compound across scenarios. This dissertation presents our studies of this form of awareness in collaborative AR environments. It stems from our research in developing mixed reality environments for molecular modeling, where we explored spatial and multi-modal referencing techniques. To encapsulate the myriad of factors found in collaborative AR, we present a generic, theoretical framework and apply it to analyze this domain. Because referencing is a very human-centric activity, we present the results of an exploratory study which examines the behaviors of participants and how they generate references to physical and virtual content in co-located and remote scenarios; we found that participants refer to content using physical and virtual techniques, and that shared video is highly effective in disambiguating references in remote environments. By implementing user feedback from this study, a follow-up study explores how the environment can passively support referencing, where we discovered the role that virtual referencing plays during collaboration. A third study was conducted in order to better understand the effectiveness of giving and interpreting references using a virtual pointer; the results suggest the need for participants to be parallel with the arrow vector (strengthening the argument for shared viewpoints), as well as the importance of shadows in non-stereoscopic environments. Our contributions include a framework for analyzing the domain of inter-referential awareness, the development of novel referencing techniques, the presentation and analysis of our findings from multiple user studies, and a set of guidelines to help designers support this form of awareness

    Integrating virtual reality and augmented reality in a collaborative user interface

    Get PDF
    Application that adopts collaborative system allows multiple users to interact with other users in the same virtual space either in Virtual Reality (VR) or Augmented Reality (AR). This paper aims to integrate the VR and AR space in a Collaborative User Interface that enables the user to cooperate with other users in a different type of interfaces in a single shared space manner. The gesture interaction technique is proposed as the interaction tool in both of the virtual spaces as it can provide a more natural gesture interaction when interacting with the virtual object. The integration of VR and AR space provide a cross-discipline shared data interchange through the network protocol of client-server architecture

    Multi-Sensor Context-Awareness in Mobile Devices and Smart Artefacts

    Get PDF
    The use of context in mobile devices is receiving increasing attention in mobile and ubiquitous computing research. In this article we consider how to augment mobile devices with awareness of their environment and situation as context. Most work to date has been based on integration of generic context sensors, in particular for location and visual context. We propose a different approach based on integration of multiple diverse sensors for awareness of situational context that can not be inferred from location, and targeted at mobile device platforms that typically do not permit processing of visual context. We have investigated multi-sensor context-awareness in a series of projects, and report experience from development of a number of device prototypes. These include development of an awareness module for augmentation of a mobile phone, of the Mediacup exemplifying context-enabled everyday artifacts, and of the Smart-Its platform for aware mobile devices. The prototypes have been explored in various applications to validate the multi-sensor approach to awareness, and to develop new perspectives of how embedded context-awareness can be applied in mobile and ubiquitous computing

    Collaborative geographic visualization

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil GestĂŁo e Sistemas AmbientaisThe present document is a revision of essential references to take into account when developing ubiquitous Geographical Information Systems (GIS) with collaborative visualization purposes. Its chapters focus, respectively, on general principles of GIS, its multimedia components and ubiquitous practices; geo-referenced information visualization and its graphical components of virtual and augmented reality; collaborative environments, its technological requirements, architectural specificities, and models for collective information management; and some final considerations about the future and challenges of collaborative visualization of GIS in ubiquitous environment

    Global Teamwork: A Study of Design Learning in Collaborative Virtual Environments

    Get PDF
    With the recent developments in communication and information technologies, using Collaborative Virtual Environments (CVEs) in design activity has experienced a remarkable increase. In this paper we present a collaborative learning activity between the University of Sydney (USYD), and the Istanbul Technical University (ITU). This paper shares our teaching experience and discusses the principles of collaborative design learning in virtual environments. Followed by a study on students’ perception on the courses and collaborative learning in both universities, this paper also suggests future refinements on the course structure and the main areas of collaborative design learning. Keywords: Collaborative Design; Collaborative Virtual Environments; Design Teaching And Learning</p
    • 

    corecore