59,199 research outputs found

    SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search

    Get PDF
    The kk-Nearest Neighbor Search (kk-NNS) is the backbone of several cloud-based services such as recommender systems, face recognition, and database search on text and images. In these services, the client sends the query to the cloud server and receives the response in which case the query and response are revealed to the service provider. Such data disclosures are unacceptable in several scenarios due to the sensitivity of data and/or privacy laws. In this paper, we introduce SANNS, a system for secure kk-NNS that keeps client's query and the search result confidential. SANNS comprises two protocols: an optimized linear scan and a protocol based on a novel sublinear time clustering-based algorithm. We prove the security of both protocols in the standard semi-honest model. The protocols are built upon several state-of-the-art cryptographic primitives such as lattice-based additively homomorphic encryption, distributed oblivious RAM, and garbled circuits. We provide several contributions to each of these primitives which are applicable to other secure computation tasks. Both of our protocols rely on a new circuit for the approximate top-kk selection from nn numbers that is built from O(n+k2)O(n + k^2) comparators. We have implemented our proposed system and performed extensive experimental results on four datasets in two different computation environments, demonstrating more than 18−31×18-31\times faster response time compared to optimally implemented protocols from the prior work. Moreover, SANNS is the first work that scales to the database of 10 million entries, pushing the limit by more than two orders of magnitude.Comment: 18 pages, to appear at USENIX Security Symposium 202

    Deep Unsupervised Similarity Learning using Partially Ordered Sets

    Full text link
    Unsupervised learning of visual similarities is of paramount importance to computer vision, particularly due to lacking training data for fine-grained similarities. Deep learning of similarities is often based on relationships between pairs or triplets of samples. Many of these relations are unreliable and mutually contradicting, implying inconsistencies when trained without supervision information that relates different tuples or triplets to each other. To overcome this problem, we use local estimates of reliable (dis-)similarities to initially group samples into compact surrogate classes and use local partial orders of samples to classes to link classes to each other. Similarity learning is then formulated as a partial ordering task with soft correspondences of all samples to classes. Adopting a strategy of self-supervision, a CNN is trained to optimally represent samples in a mutually consistent manner while updating the classes. The similarity learning and grouping procedure are integrated in a single model and optimized jointly. The proposed unsupervised approach shows competitive performance on detailed pose estimation and object classification.Comment: Accepted for publication at IEEE Computer Vision and Pattern Recognition 201

    An In-Depth Study on Open-Set Camera Model Identification

    Full text link
    Camera model identification refers to the problem of linking a picture to the camera model used to shoot it. As this might be an enabling factor in different forensic applications to single out possible suspects (e.g., detecting the author of child abuse or terrorist propaganda material), many accurate camera model attribution methods have been developed in the literature. One of their main drawbacks, however, is the typical closed-set assumption of the problem. This means that an investigated photograph is always assigned to one camera model within a set of known ones present during investigation, i.e., training time, and the fact that the picture can come from a completely unrelated camera model during actual testing is usually ignored. Under realistic conditions, it is not possible to assume that every picture under analysis belongs to one of the available camera models. To deal with this issue, in this paper, we present the first in-depth study on the possibility of solving the camera model identification problem in open-set scenarios. Given a photograph, we aim at detecting whether it comes from one of the known camera models of interest or from an unknown one. We compare different feature extraction algorithms and classifiers specially targeting open-set recognition. We also evaluate possible open-set training protocols that can be applied along with any open-set classifier, observing that a simple of those alternatives obtains best results. Thorough testing on independent datasets shows that it is possible to leverage a recently proposed convolutional neural network as feature extractor paired with a properly trained open-set classifier aiming at solving the open-set camera model attribution problem even to small-scale image patches, improving over state-of-the-art available solutions.Comment: Published through IEEE Access journa

    MOON: A Mixed Objective Optimization Network for the Recognition of Facial Attributes

    Full text link
    Attribute recognition, particularly facial, extracts many labels for each image. While some multi-task vision problems can be decomposed into separate tasks and stages, e.g., training independent models for each task, for a growing set of problems joint optimization across all tasks has been shown to improve performance. We show that for deep convolutional neural network (DCNN) facial attribute extraction, multi-task optimization is better. Unfortunately, it can be difficult to apply joint optimization to DCNNs when training data is imbalanced, and re-balancing multi-label data directly is structurally infeasible, since adding/removing data to balance one label will change the sampling of the other labels. This paper addresses the multi-label imbalance problem by introducing a novel mixed objective optimization network (MOON) with a loss function that mixes multiple task objectives with domain adaptive re-weighting of propagated loss. Experiments demonstrate that not only does MOON advance the state of the art in facial attribute recognition, but it also outperforms independently trained DCNNs using the same data. When using facial attributes for the LFW face recognition task, we show that our balanced (domain adapted) network outperforms the unbalanced trained network.Comment: Post-print of manuscript accepted to the European Conference on Computer Vision (ECCV) 2016 http://link.springer.com/chapter/10.1007%2F978-3-319-46454-1_
    • …
    corecore