96,638 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    A survey of IoT security based on a layered architecture of sensing and data analysis

    Get PDF
    The Internet of Things (IoT) is leading today’s digital transformation. Relying on a combination of technologies, protocols, and devices such as wireless sensors and newly developed wearable and implanted sensors, IoT is changing every aspect of daily life, especially recent applications in digital healthcare. IoT incorporates various kinds of hardware, communication protocols, and services. This IoT diversity can be viewed as a double-edged sword that provides comfort to users but can lead also to a large number of security threats and attacks. In this survey paper, a new compacted and optimized architecture for IoT is proposed based on five layers. Likewise, we propose a new classification of security threats and attacks based on new IoT architecture. The IoT architecture involves a physical perception layer, a network and protocol layer, a transport layer, an application layer, and a data and cloud services layer. First, the physical sensing layer incorporates the basic hardware used by IoT. Second, we highlight the various network and protocol technologies employed by IoT, and review the security threats and solutions. Transport protocols are exhibited and the security threats against them are discussed while providing common solutions. Then, the application layer involves application protocols and lightweight encryption algorithms for IoT. Finally, in the data and cloud services layer, the main important security features of IoT cloud platforms are addressed, involving confidentiality, integrity, authorization, authentication, and encryption protocols. The paper is concluded by presenting the open research issues and future directions towards securing IoT, including the lack of standardized lightweight encryption algorithms, the use of machine-learning algorithms to enhance security and the related challenges, the use of Blockchain to address security challenges in IoT, and the implications of IoT deployment in 5G and beyond

    TLS on Android – Evolution over the last decade

    Get PDF
    Mobile Geräte und mobile Plattformen sind omnipräsent. Android hat sich zum bedeutendsten mobilen Betriebssystem entwickelt und bietet Milliarden Benutzer:innen eine Plattform mit Millionen von Apps. Diese bieten zunehmend Lösungen für alltägliche Probleme und sind aus dem Alltag nicht mehr wegzudenken. Mobile Apps arbeiten dazu mehr und mehr mit persönlichen sensiblen Daten, sodass ihr Datenverkehr ein attraktives Angriffsziel für Man-in-the-Middle-attacks (MitMAs) ist. Schutz gegen solche Angriffe bieten Protokolle wie Transport Layer Security (TLS) und Hypertext Transfer Protocol Secure (HTTPS), deren fehlerhafter Einsatz jedoch zu ebenso gravierenden Unsicherheiten führen kann. Zahlreiche Ereignisse und frühere Forschungsergebnisse haben diesbezüglich Schwachstellen in Android Apps gezeigt. Diese Arbeit präsentiert eine Reihe von Forschungsbeiträgen, die sich mit der Sicherheit von Android befassen. Der Hauptfokus liegt dabei auf der Netzwerksicherheit von Android Apps. Hierbei untersucht diese Arbeit verschiedene Möglichkeiten zur Verbesserung der Netzwerksicherheit und deren Erfolg, wobei sie die Situation in Android auch mit der generellen Evolution von Netzwerksicherheit in Kontext setzt. Darüber hinaus schließt diese Arbeit mit einer Erhebung der aktuellen Situation und zeigt Möglichkeiten zur weiteren Verbesserung auf.Smart devices and mobile platforms are omnipresent. Android OS has evolved to become the most dominating mobile operating system on the market with billions of devices and a platform with millions of apps. Apps increasingly offer solutions to everyday problems and have become an indispensable part of people’s daily life. Due to this, mobile apps carry and handle more and more personal and privacy-sensitive data which also involves communication with backend or third party services. Due to this, their network traffic is an attractive target for Man-in-the-Middle-attacks (MitMAs). Protection against such attacks is provided by protocols such as Transport Layer Security (TLS) and Hypertext Transfer Protocol Secure (HTTPS). Incorrect use of these, however, can impose similar vulnerabilities lead to equally serious security issues. Numerous incidents and research efforts have featured such vulnerabilities in Android apps in this regard. This thesis presents a line of research addressing security on Android with a main focus on the network security of Android apps. This work covers various approaches for improving network security on Android and investigates their efficacy as well as it puts findings in context with the general evolution of network security in a larger perspective. Finally, this work concludes with a survey of the current state of network security in Android apps and envisions directions for further improvement

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration

    Get PDF
    The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.Peer ReviewedPostprint (author's final draft

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems
    • …
    corecore