1,341 research outputs found

    Higher-Order Contingentism, Part 1: Closure and Generation

    Get PDF
    This paper is a study of higher-order contingentism – the view, roughly, that it is contingent what properties and propositions there are. We explore the motivations for this view and various ways in which it might be developed, synthesizing and expanding on work by Kit Fine, Robert Stalnaker, and Timothy Williamson. Special attention is paid to the question of whether the view makes sense by its own lights, or whether articulating the view requires drawing distinctions among possibilities that, according to the view itself, do not exist to be drawn. The paper begins with a non-technical exposition of the main ideas and technical results, which can be read on its own. This exposition is followed by a formal investigation of higher-order contingentism, in which the tools of variable-domain intensional model theory are used to articulate various versions of the view, understood as theories formulated in a higher-order modal language. Our overall assessment is mixed: higher-order contingentism can be fleshed out into an elegant systematic theory, but perhaps only at the cost of abandoning some of its original motivations

    Agglomerative Algebras

    Get PDF
    This paper investigates a generalization of Boolean algebras which I call agglomerative algebras. It also outlines two conceptions of propositions according to which they form an agglomerative algebra but not a Boolean algebra with respect to conjunction and negation

    Nominal Abstraction

    Get PDF
    Recursive relational specifications are commonly used to describe the computational structure of formal systems. Recent research in proof theory has identified two features that facilitate direct, logic-based reasoning about such descriptions: the interpretation of atomic judgments through recursive definitions and an encoding of binding constructs via generic judgments. However, logics encompassing these two features do not currently allow for the definition of relations that embody dynamic aspects related to binding, a capability needed in many reasoning tasks. We propose a new relation between terms called nominal abstraction as a means for overcoming this deficiency. We incorporate nominal abstraction into a rich logic also including definitions, generic quantification, induction, and co-induction that we then prove to be consistent. We present examples to show that this logic can provide elegant treatments of binding contexts that appear in many proofs, such as those establishing properties of typing calculi and of arbitrarily cascading substitutions that play a role in reducibility arguments.Comment: To appear in the Journal of Information and Computatio

    The Structure of First-Order Causality

    Get PDF
    Game semantics describe the interactive behavior of proofs by interpreting formulas as games on which proofs induce strategies. Such a semantics is introduced here for capturing dependencies induced by quantifications in first-order propositional logic. One of the main difficulties that has to be faced during the elaboration of this kind of semantics is to characterize definable strategies, that is strategies which actually behave like a proof. This is usually done by restricting the model to strategies satisfying subtle combinatorial conditions, whose preservation under composition is often difficult to show. Here, we present an original methodology to achieve this task, which requires to combine advanced tools from game semantics, rewriting theory and categorical algebra. We introduce a diagrammatic presentation of the monoidal category of definable strategies of our model, by the means of generators and relations: those strategies can be generated from a finite set of atomic strategies and the equality between strategies admits a finite axiomatization, this equational structure corresponding to a polarized variation of the notion of bialgebra. This work thus bridges algebra and denotational semantics in order to reveal the structure of dependencies induced by first-order quantifiers, and lays the foundations for a mechanized analysis of causality in programming languages

    Strong Normalization for HA + EM1 by Non-Deterministic Choice

    Full text link
    We study the strong normalization of a new Curry-Howard correspondence for HA + EM1, constructive Heyting Arithmetic with the excluded middle on Sigma01-formulas. The proof-term language of HA + EM1 consists in the lambda calculus plus an operator ||_a which represents, from the viewpoint of programming, an exception operator with a delimited scope, and from the viewpoint of logic, a restricted version of the excluded middle. We give a strong normalization proof for the system based on a technique of "non-deterministic immersion".Comment: In Proceedings COS 2013, arXiv:1309.092

    Logic in the Tractatus

    Get PDF
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably infinite, then the property of being a tautology is \Pi^1_1-complete. But third, it is only granted the assumption of countability that the class of tautologies is \Sigma_1-definable in set theory. Wittgenstein famously urges that logical relationships must show themselves in the structure of signs. He also urges that the size of the universe cannot be prejudged. The results of this paper indicate that there is no single way in which logical relationships could be held to make themselves manifest in signs, which does not prejudge the number of objects
    • …
    corecore