31,227 research outputs found

    TAXONOMY DEVELOPMENT IN INFORMATION SYSTEMS: DEVELOPING A TAXONOMY OF MOBILE APPLICATIONS

    Get PDF
    The complexity of the information systems field often lends itself to classification schemes, or taxonomies, which provide ways to understand the similarities and differences among objects under study. Developing a taxonomy, however, is a complex process that is often done in an ad hoc way. This research-in-progress paper uses the design science paradigm to develop a systematic method for taxonomy development in information systems. The method we propose uses an indicator or operational level model that combines both empirical to deductive and deductive to empirical approaches. We evaluate this method by using it to develop a taxonomy of mobile applications, which we have chosen because of their ever-increasing number and variety. The resulting taxonomy contains seven dimensions with fifteen characteristics. We demonstrate the usefulness of this taxonomy by analyzing a range of current and proposed mobile applications. From the results of this analysis we identify combinations of characteristics where applications are missing and thus are candidates for new and potentially useful applications.taxonomy, design science, mobile application

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Cloud computing services: taxonomy and comparison

    Get PDF
    Cloud computing is a highly discussed topic in the technical and economic world, and many of the big players of the software industry have entered the development of cloud services. Several companies what to explore the possibilities and benefits of incorporating such cloud computing services in their business, as well as the possibilities to offer own cloud services. However, with the amount of cloud computing services increasing quickly, the need for a taxonomy framework rises. This paper examines the available cloud computing services and identifies and explains their main characteristics. Next, this paper organizes these characteristics and proposes a tree-structured taxonomy. This taxonomy allows quick classifications of the different cloud computing services and makes it easier to compare them. Based on existing taxonomies, this taxonomy provides more detailed characteristics and hierarchies. Additionally, the taxonomy offers a common terminology and baseline information for easy communication. Finally, the taxonomy is explained and verified using existing cloud services as examples

    A Taxonomy for Congestion Control Algorithms in Vehicular Ad Hoc Networks

    Full text link
    One of the main criteria in Vehicular Ad hoc Networks (VANETs) that has attracted the researchers' consideration is congestion control. Accordingly, many algorithms have been proposed to alleviate the congestion problem, although it is hard to find an appropriate algorithm for applications and safety messages among them. Safety messages encompass beacons and event-driven messages. Delay and reliability are essential requirements for event-driven messages. In crowded networks where beacon messages are broadcasted at a high number of frequencies by many vehicles, the Control Channel (CCH), which used for beacons sending, will be easily congested. On the other hand, to guarantee the reliability and timely delivery of event-driven messages, having a congestion free control channel is a necessity. Thus, consideration of this study is given to find a solution for the congestion problem in VANETs by taking a comprehensive look at the existent congestion control algorithms. In addition, the taxonomy for congestion control algorithms in VANETs is presented based on three classes, namely, proactive, reactive and hybrid. Finally, we have found the criteria in which fulfill prerequisite of a good congestion control algorithm
    corecore