572 research outputs found

    On improving security of GPT cryptosystems

    Full text link
    The public key cryptosystem based on rank error correcting codes (the GPT cryptosystem) was proposed in 1991. Use of rank codes in cryptographic applications is advantageous since it is practically impossible to utilize combinatoric decoding. This enabled using public keys of a smaller size. Several attacks against this system were published, including Gibson's attacks and more recently Overbeck's attacks. A few modifications were proposed withstanding Gibson's attack but at least one of them was broken by the stronger attacks by Overbeck. A tool to prevent Overbeck's attack is presented in [12]. In this paper, we apply this approach to other variants of the GPT cryptosystem.Comment: 5 pages. submitted ISIT 2009.Processed on IEEE ISIT201

    Public Key Protocols over Twisted Dihedral Group Rings

    Get PDF
    Key management is a central problem in information security. The development of quantum computation could make the protocols we currently use unsecure. Because of that, new structures and hard problems are being proposed. In this work, we give a proposal for a key exchange in the context of NIST recommendations. Our protocol has a twisted group ring as setting, jointly with the so-called decomposition problem, and we provide a security and complexity analysis of the protocol. A computationally equivalent cryptosystem is also proposed

    LEDAkem: a post-quantum key encapsulation mechanism based on QC-LDPC codes

    Full text link
    This work presents a new code-based key encapsulation mechanism (KEM) called LEDAkem. It is built on the Niederreiter cryptosystem and relies on quasi-cyclic low-density parity-check codes as secret codes, providing high decoding speeds and compact keypairs. LEDAkem uses ephemeral keys to foil known statistical attacks, and takes advantage of a new decoding algorithm that provides faster decoding than the classical bit-flipping decoder commonly adopted in this kind of systems. The main attacks against LEDAkem are investigated, taking into account quantum speedups. Some instances of LEDAkem are designed to achieve different security levels against classical and quantum computers. Some performance figures obtained through an efficient C99 implementation of LEDAkem are provided.Comment: 21 pages, 3 table

    A Smart Approach for GPT Cryptosystem Based on Rank Codes

    Full text link
    The concept of Public- key cryptosystem was innovated by McEliece's cryptosystem. The public key cryptosystem based on rank codes was presented in 1991 by Gabidulin -Paramonov-Trejtakov(GPT). The use of rank codes in cryptographic applications is advantageous since it is practically impossible to utilize combinatoric decoding. This has enabled using public keys of a smaller size. Respective structural attacks against this system were proposed by Gibson and recently by Overbeck. Overbeck's attacks break many versions of the GPT cryptosystem and are turned out to be either polynomial or exponential depending on parameters of the cryptosystem. In this paper, we introduce a new approach, called the Smart approach, which is based on a proper choice of the distortion matrix X. The Smart approach allows for withstanding all known attacks even if the column scrambler matrix P over the base field Fq.Comment: 5 pages. to appear in Proceedings of IEEE ISIT201

    Variations of the McEliece Cryptosystem

    Full text link
    Two variations of the McEliece cryptosystem are presented. The first one is based on a relaxation of the column permutation in the classical McEliece scrambling process. This is done in such a way that the Hamming weight of the error, added in the encryption process, can be controlled so that efficient decryption remains possible. The second variation is based on the use of spatially coupled moderate-density parity-check codes as secret codes. These codes are known for their excellent error-correction performance and allow for a relatively low key size in the cryptosystem. For both variants the security with respect to known attacks is discussed

    A Brief Retrospective Look at the Cayley-Purser Public-key Cryptosystem, 19 Years Later

    Get PDF
    The purpose of this paper is to describe and analyze the Cayley-Purser algorithm, which is a public-key cryptosystem proposed by Flannery in 1999. I will present two attacks on it, one of which is apparently new. I will also examine a variant of the Cayley-Purser algorithm that was patented by Slavin in 2008, and show that it is also insecure.Comment: submitted for publicatio
    corecore