4,757 research outputs found

    Learning Deep Neural Networks for Vehicle Re-ID with Visual-spatio-temporal Path Proposals

    Full text link
    Vehicle re-identification is an important problem and has many applications in video surveillance and intelligent transportation. It gains increasing attention because of the recent advances of person re-identification techniques. However, unlike person re-identification, the visual differences between pairs of vehicle images are usually subtle and even challenging for humans to distinguish. Incorporating additional spatio-temporal information is vital for solving the challenging re-identification task. Existing vehicle re-identification methods ignored or used over-simplified models for the spatio-temporal relations between vehicle images. In this paper, we propose a two-stage framework that incorporates complex spatio-temporal information for effectively regularizing the re-identification results. Given a pair of vehicle images with their spatio-temporal information, a candidate visual-spatio-temporal path is first generated by a chain MRF model with a deeply learned potential function, where each visual-spatio-temporal state corresponds to an actual vehicle image with its spatio-temporal information. A Siamese-CNN+Path-LSTM model takes the candidate path as well as the pairwise queries to generate their similarity score. Extensive experiments and analysis show the effectiveness of our proposed method and individual components.Comment: To appear in ICCV 201

    Spatio-temporal Person Retrieval via Natural Language Queries

    Full text link
    In this paper, we address the problem of spatio-temporal person retrieval from multiple videos using a natural language query, in which we output a tube (i.e., a sequence of bounding boxes) which encloses the person described by the query. For this problem, we introduce a novel dataset consisting of videos containing people annotated with bounding boxes for each second and with five natural language descriptions. To retrieve the tube of the person described by a given natural language query, we design a model that combines methods for spatio-temporal human detection and multimodal retrieval. We conduct comprehensive experiments to compare a variety of tube and text representations and multimodal retrieval methods, and present a strong baseline in this task as well as demonstrate the efficacy of our tube representation and multimodal feature embedding technique. Finally, we demonstrate the versatility of our model by applying it to two other important tasks.Comment: Accepted to ICCV201

    Probabilistic Semantic Retrieval for Surveillance Videos with Activity Graphs

    Full text link
    We present a novel framework for finding complex activities matching user-described queries in cluttered surveillance videos. The wide diversity of queries coupled with unavailability of annotated activity data limits our ability to train activity models. To bridge the semantic gap we propose to let users describe an activity as a semantic graph with object attributes and inter-object relationships associated with nodes and edges, respectively. We learn node/edge-level visual predictors during training and, at test-time, propose to retrieve activity by identifying likely locations that match the semantic graph. We formulate a novel CRF based probabilistic activity localization objective that accounts for mis-detections, mis-classifications and track-losses, and outputs a likelihood score for a candidate grounded location of the query in the video. We seek groundings that maximize overall precision and recall. To handle the combinatorial search over all high-probability groundings, we propose a highest precision subgraph matching algorithm. Our method outperforms existing retrieval methods on benchmarked datasets.Comment: 1520-9210 (c) 2018 IEEE. This paper has been accepted by IEEE Transactions on Multimedia. Print ISSN: 1520-9210. Online ISSN: 1941-0077. Preprint link is https://ieeexplore.ieee.org/document/8438958

    A Compact Representation for Trips over Networks built on self-indexes

    Full text link
    Representing the movements of objects (trips) over a network in a compact way while retaining the capability of exploiting such data effectively is an important challenge of real applications. We present a new Compact Trip Representation (CTR) that handles the spatio-temporal data associated with users' trips over transportation networks. Depending on the network and types of queries, nodes in the network can represent intersections, stops, or even street segments. CTR represents separately sequences of nodes and the time instants when users traverse these nodes. The spatial component is handled with a data structure based on the well-known Compressed Suffix Array (CSA), which provides both a compact representation and interesting indexing capabilities. The temporal component is self-indexed with either a Hu-Tucker-shaped Wavelet-tree or a Wavelet Matrix that solve range-interval queries efficiently. We show how CTR can solve relevant counting-based spatial, temporal, and spatio-temporal queries over large sets of trips. Experimental results show the space requirements (around 50-70% of the space needed by a compact non-indexed baseline) and query efficiency (most queries are solved in the range of 1-1000 microseconds) of CTR.Comment: 42 page

    Deep Siamese Networks with Bayesian non-Parametrics for Video Object Tracking

    Full text link
    We present a novel algorithm utilizing a deep Siamese neural network as a general object similarity function in combination with a Bayesian optimization (BO) framework to encode spatio-temporal information for efficient object tracking in video. In particular, we treat the video tracking problem as a dynamic (i.e. temporally-evolving) optimization problem. Using Gaussian Process priors, we model a dynamic objective function representing the location of a tracked object in each frame. By exploiting temporal correlations, the proposed method queries the search space in a statistically principled and efficient way, offering several benefits over current state of the art video tracking methods

    ATTENTION: ATTackEr traceback using MAC layer abNormality detecTION

    Full text link
    Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks can cause serious problems in wireless networks due to limited network and host resources. Attacker traceback is a promising solution to take a proper countermeasure near the attack origins, to discourage attackers from launching attacks, and for forensics. However, attacker traceback in Mobile Ad-hoc Networks (MANETs) is a challenging problem due to the dynamic topology, and limited network resources. It is especially difficult to trace back attacker(s) when they are moving to avoid traceback. In this paper, we introduce the ATTENTION protocol framework, which pays special attention to MAC layer abnormal activity under attack. ATTENTION consists of three classes, namely, coarse-grained traceback, fine-grained traceback and spatio-temporal fusion architecture. For energy-efficient attacker searching in MANETs, we also utilize small-world model. Our simulation analysis shows 79% of success rate in DoS attacker traceback with coarse-grained attack signature. In addition, with fine-grained attack signature, it shows 97% of success rate in DoS attacker traceback and 83% of success rate in DDoS attacker traceback. We also show that ATTENTION has robustness against node collusion and mobility

    Referring to Objects in Videos using Spatio-Temporal Identifying Descriptions

    Full text link
    This paper presents a new task, the grounding of spatio-temporal identifying descriptions in videos. Previous work suggests potential bias in existing datasets and emphasizes the need for a new data creation schema to better model linguistic structure. We introduce a new data collection scheme based on grammatical constraints for surface realization to enable us to investigate the problem of grounding spatio-temporal identifying descriptions in videos. We then propose a two-stream modular attention network that learns and grounds spatio-temporal identifying descriptions based on appearance and motion. We show that motion modules help to ground motion-related words and also help to learn in appearance modules because modular neural networks resolve task interference between modules. Finally, we propose a future challenge and a need for a robust system arising from replacing ground truth visual annotations with automatic video object detector and temporal event localization

    Semantic-based Anomalous Pattern Discovery in Moving Object Trajectories

    Full text link
    In this work, we investigate a novel semantic approach for pattern discovery in trajectories that, relying on ontologies, enhances object movement information with event semantics. The approach can be applied to the detection of movement patterns and behaviors whenever the semantics of events occurring along the trajectory is, explicitly or implicitly, available. In particular, we tested it against an exacting case scenario in maritime surveillance, i.e., the discovery of suspicious container transportations. The methodology we have developed entails the formalization of the application domain through a domain ontology, extending the Moving Object Ontology (MOO) described in this paper. Afterwards, movement patterns have to be formalized, either as Description Logic (DL) axioms or queries, enabling the retrieval of the trajectories that follow the patterns. In our experimental evaluation, we have considered a real world dataset of 18 Million of container events describing the deed undertaken in a port to accomplish the shipping (e.g., loading on a vessel, export operation). Leveraging events, we have reconstructed almost 300 thousand container trajectories referring to 50 thousand containers travelling along three years. We have formalized the anomalous itinerary patterns as DL axioms, testing different ontology APIs and DL reasoners to retrieve the suspicious transportations. Our experiments demonstrate that the approach is feasible and efficient. In particular, the joint use of Pellet and SPARQL-DL enables to detect the trajectories following a given pattern in a reasonable time with big size datasets

    Context-Aware Query Selection for Active Learning in Event Recognition

    Full text link
    Activity recognition is a challenging problem with many practical applications. In addition to the visual features, recent approaches have benefited from the use of context, e.g., inter-relationships among the activities and objects. However, these approaches require data to be labeled, entirely available beforehand, and not designed to be updated continuously, which make them unsuitable for surveillance applications. In contrast, we propose a continuous-learning framework for context-aware activity recognition from unlabeled video, which has two distinct advantages over existing methods. First, it employs a novel active-learning technique that not only exploits the informativeness of the individual activities but also utilizes their contextual information during query selection; this leads to significant reduction in expensive manual annotation effort. Second, the learned models can be adapted online as more data is available. We formulate a conditional random field model that encodes the context and devise an information-theoretic approach that utilizes entropy and mutual information of the nodes to compute the set of most informative queries, which are labeled by a human. These labels are combined with graphical inference techniques for incremental updates. We provide a theoretical formulation of the active learning framework with an analytic solution. Experiments on six challenging datasets demonstrate that our framework achieves superior performance with significantly less manual labeling.Comment: To appear in Transactions of Pattern Pattern Analysis and Machine Intelligence (T-PAMI

    CADP: A Novel Dataset for CCTV Traffic Camera based Accident Analysis

    Full text link
    This paper presents a novel dataset for traffic accidents analysis. Our goal is to resolve the lack of public data for research about automatic spatio-temporal annotations for traffic safety in the roads. Through the analysis of the proposed dataset, we observed a significant degradation of object detection in pedestrian category in our dataset, due to the object sizes and complexity of the scenes. To this end, we propose to integrate contextual information into conventional Faster R-CNN using Context Mining (CM) and Augmented Context Mining (ACM) to complement the accuracy for small pedestrian detection. Our experiments indicate a considerable improvement in object detection accuracy: +8.51% for CM and +6.20% for ACM. Finally, we demonstrate the performance of accident forecasting in our dataset using Faster R-CNN and an Accident LSTM architecture. We achieved an average of 1.684 seconds in terms of Time-To-Accident measure with an Average Precision of 47.25%. Our Webpage for the paper is https://goo.gl/cqK2wEComment: Accepted at IEEE International Workshop on Traffic and Street Surveillance for Safety and Security, First three authors contributed equally, 7 pages + 1 Reference
    corecore