47 research outputs found

    Architectures for the Future Networks and the Next Generation Internet: A Survey

    Get PDF
    Networking research funding agencies in the USA, Europe, Japan, and other countries are encouraging research on revolutionary networking architectures that may or may not be bound by the restrictions of the current TCP/IP based Internet. We present a comprehensive survey of such research projects and activities. The topics covered include various testbeds for experimentations for new architectures, new security mechanisms, content delivery mechanisms, management and control frameworks, service architectures, and routing mechanisms. Delay/Disruption tolerant networks, which allow communications even when complete end-to-end path is not available, are also discussed

    Incrementando as redes centradas à informaçãopara uma internet das coisas baseada em nomes

    Get PDF
    The way we use the Internet has been evolving since its origins. Nowadays, users are more interested in accessing contents and services with high demands in terms of bandwidth, security and mobility. This evolution has triggered the emergence of novel networking architectures targeting current, as well as future, utilisation demands. Information-Centric Networking (ICN) is a prominent example of these novel architectures that moves away from the current host-centric communications and centres its networking functions around content. Parallel to this, new utilisation scenarios in which smart devices interact with one another, as well as with other networked elements, have emerged to constitute what we know as the Internet of Things (IoT). IoT is expected to have a significant impact on both the economy and society. However, fostering the widespread adoption of IoT requires many challenges to be overcome. Despite recent developments, several issues concerning the deployment of IPbased IoT solutions on a large scale are still open. The fact that IoT is focused on data and information rather than on point-topoint communications suggests the adoption of solutions relying on ICN architectures. In this context, this work explores the ground concepts of ICN to develop a comprehensive vision of the principal requirements that should be met by an IoT-oriented ICN architecture. This vision is complemented with solutions to fundamental issues for the adoption of an ICN-based IoT. First, to ensure the freshness of the information while retaining the advantages of ICN’s in-network caching mechanisms. Second, to enable discovery functionalities in both local and large-scale domains. The proposed mechanisms are evaluated through both simulation and prototyping approaches, with results showcasing the feasibility of their adoption. Moreover, the outcomes of this work contribute to the development of new compelling concepts towards a full-fledged Named Network of Things.A forma como usamos a Internet tem vindo a evoluir desde a sua criação. Atualmente, os utilizadores estão mais interessados em aceder a conteúdos e serviços, com elevados requisitos em termos de largura de banda, segurança e mobilidade. Esta evolução desencadeou o desenvolvimento de novas arquiteturas de rede, visando os atuais, bem como os futuros, requisitos de utilização. As Redes Centradas à Informação (Information-Centric Networking - ICN) são um exemplo proeminente destas novas arquiteturas que, em vez de seguirem um modelo de comunicação centrado nos dispositivos terminais, centram as suas funções de rede em torno do próprio conteúdo. Paralelamente, novos cenários de utilização onde dispositivos inteligentes interagem entre si, e com outros elementos de rede, têm vindo a aparecer e constituem o que hoje conhecemos como a Internet das Coisas (Internet of Things - IoT ). É esperado que a IoT tenha um impacto significativo na economia e na sociedade. No entanto, promover a adoção em massa da IoT ainda requer que muitos desafios sejam superados. Apesar dos desenvolvimentos recentes, vários problemas relacionados com a adoção em larga escala de soluções de IoT baseadas no protocolo IP estão em aberto. O facto da IoT estar focada em dados e informação, em vez de comunicações ponto-a-ponto, sugere a adoção de soluções baseadas em arquiteturas ICN. Neste sentido, este trabalho explora os conceitos base destas soluções para desenvolver uma visão completa dos principais requisitos que devem ser satisfeitos por uma solução IoT baseada na arquitetura de rede ICN. Esta visão é complementada com soluções para problemas cruciais para a adoção de uma IoT baseada em ICN. Em primeiro lugar, assegurar que a informação seja atualizada e, ao mesmo tempo, manter as vantagens do armazenamento intrínseco em elementos de rede das arquiteturas ICN. Em segundo lugar, permitir as funcionalidades de descoberta não só em domínios locais, mas também em domínios de larga-escala. Os mecanismos propostos são avaliados através de simulações e prototipagem, com os resultados a demonstrarem a viabilidade da sua adoção. Para além disso, os resultados deste trabalho contribuem para o desenvolvimento de conceitos sólidos em direção a uma verdadeira Internet das Coisas baseada em Nomes.Programa Doutoral em Telecomunicaçõe

    Service Provisioning in Edge-Cloud Continuum Emerging Applications for Mobile Devices

    Get PDF
    Disruptive applications for mobile devices can be enhanced by Edge computing facilities. In this context, Edge Computing (EC) is a proposed architecture to meet the mobility requirements imposed by these applications in a wide range of domains, such as the Internet of Things, Immersive Media, and Connected and Autonomous Vehicles. EC architecture aims to introduce computing capabilities in the path between the user and the Cloud to execute tasks closer to where they are consumed, thus mitigating issues related to latency, context awareness, and mobility support. In this survey, we describe which are the leading technologies to support the deployment of EC infrastructure. Thereafter, we discuss the applications that can take advantage of EC and how they were proposed in the literature. Finally, after examining enabling technologies and related applications, we identify some open challenges to fully achieve the potential of EC, and also research opportunities on upcoming paradigms for service provisioning. This survey is a guide to comprehend the recent advances on the provisioning of mobile applications, as well as foresee the expected next stages of evolution for these applications

    QuLa: queue and latency-aware service selection and routing in service-centric networking

    Get PDF
    Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables

    Mobility-aware Software-Defined Service-Centric Networking for Service Provisioning in Urban Environments

    Get PDF
    Disruptive applications for mobile devices, such as the Internet of Things, Connected and Autonomous Vehicles, Immersive Media, and others, have requirements that the current Cloud Computing paradigm cannot meet. These unmet requirements bring the necessity to deploy geographically distributed computing architectures, such as Fog and Mobile Edge Computing. However, bringing computing close to users has its costs. One example of cost is the complexity introduced by the management of the mobility of the devices at the edge. This mobility may lead to issues, such as interruption of the communication with service instances hosted at the edge or an increase in communication latency during mobility events, e.g., handover. These issues, caused by the lack of mobility-aware service management solutions, result in degradation in service provisioning. The present thesis proposes a series of protocols and algorithms to handle user and service mobility at the edge of the network. User mobility is characterized when user change access points of wireless networks, while service mobility happens when services have to be provisioned from different hosts. It assembles them in a solution for mobility-aware service orchestration based on Information-Centric Networking (ICN) and runs on top of Software-Defined Networking (SDN). This solution addresses three issues related to handling user mobility at the edge: (i) proactive support for user mobility events, (ii) service instance addressing management, and (iii) distributed application state data management. For (i), we propose a proactive SDN-based handover scheme. For (ii), we propose an ICN addressing strategy to remove the necessity of updating addresses after service mobility events. For (iii), we propose a graph-based framework for state data placement in the network nodes that accounts for user mobility and latency requirements. The protocols and algorithms proposed in this thesis were compared with different approaches from the literature through simulation. Our results show that the proposed solution can reduce service interruption and latency in the presence of user and service mobility events while maintaining reasonable overhead costs regarding control messages sent in the network by the SDN controller

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Application of service composition mechanisms to Future Networks architectures and Smart Grids

    Get PDF
    Aquesta tesi gira entorn de la hipòtesi de la metodologia i mecanismes de composició de serveis i com es poden aplicar a diferents camps d'aplicació per a orquestrar de manera eficient comunicacions i processos flexibles i sensibles al context. Més concretament, se centra en dos camps d'aplicació: la distribució eficient i sensible al context de contingut multimèdia i els serveis d'una xarxa elèctrica intel·ligent. En aquest últim camp es centra en la gestió de la infraestructura, cap a la definició d'una Software Defined Utility (SDU), que proposa una nova manera de gestionar la Smart Grid amb un enfocament basat en programari, que permeti un funcionament molt més flexible de la infraestructura de xarxa elèctrica. Per tant, revisa el context, els requisits i els reptes, així com els enfocaments de la composició de serveis per a aquests camps. Fa especial èmfasi en la combinació de la composició de serveis amb arquitectures Future Network (FN), presentant una proposta de FN orientada a serveis per crear comunicacions adaptades i sota demanda. També es presenten metodologies i mecanismes de composició de serveis per operar sobre aquesta arquitectura, i posteriorment, es proposa el seu ús (en conjunció o no amb l'arquitectura FN) en els dos camps d'estudi. Finalment, es presenta la investigació i desenvolupament realitzat en l'àmbit de les xarxes intel·ligents, proposant diverses parts de la infraestructura SDU amb exemples d'aplicació de composició de serveis per dissenyar seguretat dinàmica i flexible o l'orquestració i gestió de serveis i recursos dins la infraestructura de l'empresa elèctrica.Esta tesis gira en torno a la hipótesis de la metodología y mecanismos de composición de servicios y cómo se pueden aplicar a diferentes campos de aplicación para orquestar de manera eficiente comunicaciones y procesos flexibles y sensibles al contexto. Más concretamente, se centra en dos campos de aplicación: la distribución eficiente y sensible al contexto de contenido multimedia y los servicios de una red eléctrica inteligente. En este último campo se centra en la gestión de la infraestructura, hacia la definición de una Software Defined Utility (SDU), que propone una nueva forma de gestionar la Smart Grid con un enfoque basado en software, que permita un funcionamiento mucho más flexible de la infraestructura de red eléctrica. Por lo tanto, revisa el contexto, los requisitos y los retos, así como los enfoques de la composición de servicios para estos campos. Hace especial hincapié en la combinación de la composición de servicios con arquitecturas Future Network (FN), presentando una propuesta de FN orientada a servicios para crear comunicaciones adaptadas y bajo demanda. También se presentan metodologías y mecanismos de composición de servicios para operar sobre esta arquitectura, y posteriormente, se propone su uso (en conjunción o no con la arquitectura FN) en los dos campos de estudio. Por último, se presenta la investigación y desarrollo realizado en el ámbito de las redes inteligentes, proponiendo varias partes de la infraestructura SDU con ejemplos de aplicación de composición de servicios para diseñar seguridad dinámica y flexible o la orquestación y gestión de servicios y recursos dentro de la infraestructura de la empresa eléctrica.This thesis revolves around the hypothesis the service composition methodology and mechanisms and how they can be applied to different fields of application in order to efficiently orchestrate flexible and context-aware communications and processes. More concretely, it focuses on two fields of application that are the context-aware media distribution and smart grid services and infrastructure management, towards a definition of a Software-Defined Utility (SDU), which proposes a new way of managing the Smart Grid following a software-based approach that enable a much more flexible operation of the power infrastructure. Hence, it reviews the context, requirements and challenges of these fields, as well as the service composition approaches. It makes special emphasis on the combination of service composition with Future Network (FN) architectures, presenting a service-oriented FN proposal for creating context-aware on-demand communication services. Service composition methodology and mechanisms are also presented in order to operate over this architecture, and afterwards, proposed for their usage (in conjunction or not with the FN architecture) in the deployment of context-aware media distribution and Smart Grids. Finally, the research and development done in the field of Smart Grids is depicted, proposing several parts of the SDU infrastructure, with examples of service composition application for designing dynamic and flexible security for smart metering or the orchestration and management of services and data resources within the utility infrastructure

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces
    corecore