727 research outputs found

    Estimation of Web Proxy Response Times in Community Networks Using Matrix Factorization Algorithms

    Get PDF
    Producción CientíficaIn community networks, users access the web using a proxy selected from a list, normally without regard to its performance. Knowing which proxies offer good response times for each client would improve the user experience when navigating, but would involve intensive probing that would in turn cause performance degradation of both proxies and the network. This paper explores the feasibility of estimating the response times for each client/proxy pair by probing only a few of the existing pairs and then using matrix factorization. To do so, response times are collected in a community network emulated on a testbed platform, then a small part of these measurements are used to estimate the remaining ones through matrix factorization. Several algorithms are tested; one of them achieves estimation accuracy with low computational cost, which renders its use feasible in real networks.Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (grants TIN2017-85179-C3-2-R and TIN2016-77836-C2-2-R)Generalitat de Catalunya (contract AGAUR SGR 990

    Using artificial intelligence to support emerging networks management approaches

    Get PDF
    In emergent networks such as Internet of Things (IoT) and 5G applications, network traffic estimation is of great importance to forecast impacts on resource allocation that can influence the quality of service. Besides, controlling the network delay caused with route selection is still a notable challenge, owing to the high mobility of the devices. To analyse the trade-off between traffic forecasting accuracy and the complexity of artificial intelligence models used in this scenario, this work first evaluates the behavior of several traffic load forecasting models in a resource sharing environment. Moreover, in order to alleviate the routing problem in highly dynamic ad-hoc networks, this work also proposes a machine-learning-based routing scheme to reduce network delay in the high-mobility scenarios of flying ad-hoc networks, entitled Q-FANET. The performance of this new algorithm is compared with other methods using the WSNet simulator. With the obtained complexity analysis and the performed simulations, on one hand the best traffic load forecast model can be chosen, and on the other, the proposed routing solution presents lower delay, higher packet delivery ratio and lower jitter in highly dynamic networks than existing state-of-art methods

    Network virtualization in next generation cellular networks

    Get PDF
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operación y la gestión de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desafíos críticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilización de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes móviles (MNO). Esto requiere técnicas avanzadas de gestión de redes que deben desarrollarse en función de las características especiales de estas redes y las demandas de tráfico. Por lo tanto, es necesario proporcionar soluciones que permitan la creación de particiones de red aisladas lógicamente sobre la infraestructura de red física compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualización de la RAN destinadas a abordar estos desafíos. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red física, en un escenario LTE-A de múltiples niveles que es propiedad de un solo MNO. Proponemos una solución de virtualización a nivel de estación base (BS), donde los módulos de banda base de BSs distribuidas, interconectadas a través de la interfaz lógica X2, cooperan para reasignar los recursos radio en función de las necesidades de tráfico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparación con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales móviles (MVNO), al integrar el capacity broker en la arquitectura de administración de red 3GPP con un conjunto míinimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en inglés on-demand) a varios MVNOs. Además, para aprovechar al máximo las capacidades del capacity broker, proponemos un algoritmo para la asignación de recursos bajo demanda, considerando dos tipos de tráfico con distintas características. Nuestra propuesta alcanza 50% más de solicitudes admitidas sin violación del Acuerdo de Nivel de Servicio (SLA) en comparación con otros esquemas. En la tercera parte de la tesis, estudiamos una solución para el slicing de red independiente del tipo de BS, considerando la virtualización de BS en un escenario de múltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tráfico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra solución logra una ganancia promedio de uso de espectro de 67% y una reducción de la carga de procesamiento de la banda base de 16.6% en comparación con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desafíos y retos de investigación para trabajos futuros.Postprint (published version

    An Overview of Internet Measurements:Fundamentals, Techniques, and Trends

    Full text link
    The Internet presents great challenges to the characterization of its structure and behavior. Different reasons contribute to this situation, including a huge user community, a large range of applications, equipment heterogeneity, distributed administration, vast geographic coverage, and the dynamism that are typical of the current Internet. In order to deal with these challenges, several measurement-based approaches have been recently proposed to estimate and better understand the behavior, dynamics, and properties of the Internet. The set of these measurement-based techniques composes the Internet Measurements area of research. This overview paper covers the Internet Measurements area by presenting measurement-based tools and methods that directly influence other conventional areas, such as network design and planning, traffic engineering, quality of service, and network management

    Internet traffic volumes characterization and forecasting

    Get PDF
    Internet usage increases every year and the need to estimate the growth of the generated traffic has become a major topic. Forecasting actual figures in advance is essential for bandwidth allocation, networking design and investment planning. In this thesis novel mathematical equations are presented to model and to predict long-term Internet traffic in terms of total aggregating volume, globally and more locally. Historical traffic data from consecutive years have revealed hidden numerical patterns as the values progress year over year and this trend can be well represented with appropriate mathematical relations. The proposed formulae have excellent fitting properties over long-history measurements and can indicate forthcoming traffic for the next years with an exceptionally low prediction error. In cases where pending traffic data have already become available, the suggested equations provide more successful results than the respective projections that come from worldwide leading research. The studies also imply that future traffic strongly depends on the past activity and on the growth of Internet users, provided that a big and representative sample of pertinent data exists from large geographical areas. To the best of my knowledge this work is the first to introduce effective prediction methods that exclusively rely on the static attributes and the progression properties of historical values

    Passive network awareness as a means for improved grid scheduling

    Get PDF
    Grids enable sharing resources of heterogeneous nature and administration. In such distributed systems, the network is usually taken for granted which is potentially problematic due to the complexity and unpredictability of public networks that typically underlie grids. This article introduces GridMAP, a mechanism for considering the network state for enhancing grid scheduling. Network measurements are collected in a passive manner from a user-centric vantage point. This mechanism has been evaluated on a production e-science grid infrastructure, with results showing the ability of GridMAP to improve grid scheduling with minimal network, computational and deployment overheads

    Prediction-based techniques for the optimization of mobile networks

    Get PDF
    Mención Internacional en el título de doctorMobile cellular networks are complex system whose behavior is characterized by the superposition of several random phenomena, most of which, related to human activities, such as mobility, communications and network usage. However, when observed in their totality, the many individual components merge into more deterministic patterns and trends start to be identifiable and predictable. In this thesis we analyze a recent branch of network optimization that is commonly referred to as anticipatory networking and that entails the combination of prediction solutions and network optimization schemes. The main intuition behind anticipatory networking is that knowing in advance what is going on in the network can help understanding potentially severe problems and mitigate their impact by applying solution when they are still in their initial states. Conversely, network forecast might also indicate a future improvement in the overall network condition (i.e. load reduction or better signal quality reported from users). In such a case, resources can be assigned more sparingly requiring users to rely on buffered information while waiting for the better condition when it will be more convenient to grant more resources. In the beginning of this thesis we will survey the current anticipatory networking panorama and the many prediction and optimization solutions proposed so far. In the main body of the work, we will propose our novel solutions to the problem, the tools and methodologies we designed to evaluate them and to perform a real world evaluation of our schemes. By the end of this work it will be clear that not only is anticipatory networking a very promising theoretical framework, but also that it is feasible and it can deliver substantial benefit to current and next generation mobile networks. In fact, with both our theoretical and practical results we show evidences that more than one third of the resources can be saved and even larger gain can be achieved for data rate enhancements.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Albert Banchs Roca.- Presidente: Pablo Serrano Yañez-Mingot.- Secretario: Jorge Ortín Gracia.- Vocal: Guevara Noubi

    Congestion Prediction in Internet of Things Network using Temporal Convolutional Network A Centralized Approach

    Get PDF
    The unprecedented ballooning of network traffic flow, specifically, Internet of Things (IoT) network traffic, has big stressed of congestion on todays Internet. Non-recurring network traffic flow may be caused by temporary disruptions, such as packet drop, poor quality of services, delay, etc. Hence, the network traffic flow estimation is important in IoT networks to predict congestion. As the data in IoT networks is collected from a large number of diversified devices which have unlike format of data and also manifest complex correlations, so the generated data is heterogeneous and nonlinear in nature. Conventional machine learning approaches unable to deal with nonlinear datasets and suffer from misclassification of real network traffic due to overfitting. Therefore, it also becomes really hard for conventional machine learning tools like shallow neural networks to predict the congestion accurately. Accuracy of congestion prediction algorithms play an important role to control the congestion by regulating the send rate of the source. Various deeplearning methods (LSTM, CNN, GRU, etc.) are considered in designing network traffic flow predictors, which have shown promising results. In this work, we propose a novel congestion predictor for IoT, that uses Temporal Convolutional Network (TCN). Furthermore, we use Taguchi method to optimize the TCN model that reduces the number of runs of the experiments. We compare TCN with other four deep learning-based models concerning Mean Absolute Error (MAE) and Mean Relative Error (MRE). The experimental results show that TCN based deep learning framework achieves improved performance with 95.52% accuracy in predicting network congestion. Further, we design the Home IoT network testbed to capture the real network traffic flows as no standard dataset is available
    corecore