29 research outputs found

    Sensor-based ICT Systems for Smart Societies

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Simulation and fabrication of micro magnetometer using flip-chip bonding technique

    Get PDF
    Magnetic field detection has been widely accepted in many applications such as military systems, outer space exploration and even in medical diagnosis and treatment. Low magnetic field detection is particularly important in tracking of magnetic markers in digestive tracks or blood vessels. The presence of magnetic fields’ strength and direction can be detected by a device known as magnetometer. A magnetometer that is durable, room temperature operation and having non-movable components is chooses for this project. Traditional magnetometer tends to be bulky that hinders its inclusion into micro-scaled environment. This concern has brought the magnetometer into the trend of device miniaturization. Miniaturized magnetometer is usually fabricated using conventional microfabrication method particularly surface micromachining in which micro structures are built level by level starting from the surface of substrates upwards until completion of final structure. Although the miniaturization of magnetometer has been widely researched and studied, the process however is not. Thus, the process governing the fabrication technique is studied in this paper. Conventional method of fabrication is known as surface micromachining. Besides time consuming, this method requires many consecutive steps in fabrication process and careful alignment of patterns on every layer which increase the complexity. Hence, studies are done to improve time consuming and reliability of the microfabrication process. The objective of this research includes designing micro scale magnetometer and complete device fabrication processes. A micro-scale search coil magnetometer of 15 windings with 600μm thickness of wire and 300μm distance between each wire has been designed. Keywords: Magnetometer, microfabrication, miniaturization, micro-scale

    Sustainable Development: Economy, Society, and Environment

    Get PDF

    Monitoring the driver's activity using 3D information

    Get PDF
    Driver supervision is crucial in safety systems for the driver. It is important to monitor the driver to understand his necessities, patterns of movements and behaviour under determined circumstances. The availability of an accurate tool to supervise the driver’s behaviour allows multiple objectives to be achieved such as the detection of drowsiness (analysing the head movements and blinking pattern) and distraction (estimating where the driver is looking by studying the head and eyes position). Once the misbehaviour is detected in both cases an alarm, of the correct type according to the situation, could be triggered to correct the driver’s behaviour. This application distinguishes itself form other driving assistance systems due to the fact that it is oriented to analyse the inside of the vehicle instead of the outside. It is important to notice that inside supervising applications are as important as the outside supervising applications because if the driver falls asleep, a pedestrian detection algorithm can do only limited actions to prevent the accident. All this under the best and predetermined circumstances. The application has the potential to be used to estimate if the driver is looking at certain area where another application detected that an obstacle is present (inert object, animal or pedestrian). Although the market has already available technologies, able to provide automatic driver monitoring, the associated cost of the sensors to accomplish this task is very high as it is not a popular product (compared to other home or entertaining devices) nor there is a market with a high demand and supply for this sensors. Many of these technologies require external and invasive devices (attach one or a set of sensors to the body) which may interfere the driving movements proper of the nature of the driver under no supervised conditions. Current applications based on computer vision take advantage of the latest development of information technologies and the increase in computational power to create applications that fit to the criteria of a non-invasive method for driving monitoring application. Technologies such as stereo and time of flight cameras are able to overcome some of the difficulties related to computer vision applications such as extreme lighting conditions (too dark or too bright) saturation of the colour sensors and lack of depth information. It is true that the combination of different sensors can overcome this problems by performing multiple scans from different areas or by combining the information obtained from different devices but this requires an additional step of calibration, positioning and it involves a dependability factor of the application on not one but as many sensors included in the task to perform the supervision because if one of them fails, the results may not be correct. Some of the recent gaming sensors available in the market, such as the Kinect sensor bar form Microsoft, are providing a new set of previously-expensive sensors embedded in a low cost device, thus providing 3D information together with some additional features and without the need for complex sets of handcrafted system that can fail as previously mentioned. The proposed solution in this thesis monitors the driver by using the different data from the Kinect sensor (depth information, infrared and colour image). The fusion of the information from the different sources allows the usage of 2D and 3D algorithms in order to provide a reliable face detection, accurate pose estimation and trustable detection of facial features such as the eyes and nose. The system will compare, with an average speed over 10Hz, the initial face capture with the next frames, it will compare by an iterative algorithm previously configured with the compromise of accuracy and speed. In order to determine the reliability and accuracy of the proposed system, several tests were performed for the head-pose orientation algorithm with an Inertial Measurement Unit (IMU) attached to the back of the head of the collaborative subjects. The inertial measurements provided by the IMU were used as a ground truth for three degrees of freedom (3DoF) tests (yaw, pitch and roll). Finally, the tests results were compared with those available in current literature to check the performance of the algorithm presented. Estimating the head orientation is the main function of this proposal as it is the one that delivers more information to estimate the behaviour of the driver. Whether it is to have a first estimation if the driver is looking to the front or if it is presenting signs of fatigue when nodding. Supporting this tool, is another that is in charge of the analysis of the colour image that will deal with the study of the eyes of the driver. From this study, it will be possible to estimate where the driver is looking at by estimating the gaze orientation through the position of the pupil. The gaze orientation would help, along with the head orientation, to have a more accurate guess regarding where the driver is looking. The gaze orientation is then a support tool that complements the head orientation. Another way to estimate a hazardous situation is with the analysis of the opening of the eyes. It can be estimated if the driver is tired through the study of the driver’s blinking pattern during a determined time. If it is so, the driver increases the chance to cause an accident due to drowsiness. The part of the whole solution that deals with solving this problem will analyse one eye of the driver to estimate if it is closed or open according to the analysis of dark regions in the image. Once the state of the eye is determined, an analysis during a determined period of time will be done in order to know if the eye was most of the time closed or open and thus estimate in a more accurate way if the driver is falling asleep or not. This 2 modules, drowsiness detector and gaze estimator, will complement the estimation of the head orientation with the goal of getting more certainty regarding the driver’s status and, when possible, to prevent an accident due to misbehaviours. It is worth to mention that the Kinect sensor is built specifically for indoor use and connected to a video console, not for the outside. Therefore, it is inevitable that some limitations arise when performing monitoring under real driving conditions. They will be discussed in this proposal. However, the algorithm presented can be used with any point-cloud based sensor (stereo cameras, time of flight cameras, laser scanners etc...); more expensive, but less sensitive compared to the former. Future works are described at the end in order to show the scalability of this proposal.La supervisión del conductor es crucial en los sistemas de asistencia a la conducción. Resulta importante monitorizarle para entender sus necesidades, patrones de movimiento y comportamiento bajo determinadas circunstancias. La disponibilidad de una herramienta precisa que supervise el comportamiento del conductor permite que varios objetivos sean alcanzados como la detección de somnolencia (analizando los movimientos de la cabeza y parpadeo) y distracción (estimando hacia donde está mirando por medio del estudio de la posición tanto de la cabeza como de los ojos). En ambos casos, una vez detectado el mal comportamiento, se podría activar una alarma del tipo adecuado según la situación que le corresponde con el objetivo de corregir su comportamiento del conductor Esta aplicación se distingue de otros sistemas avanzados de asistencia la conducción debido al hecho de que está orientada al análisis interior del vehículo en lugar del exterior. Es importante notar que las aplicaciones de supervisión interna son tan importantes como las del exterior debido a que si el conductor se duerme, un sistema de detección de peatones o vehículos sólo podrá hacer ciertas maniobras para evitar un accidente. Todo esto bajo las condiciones idóneas y circunstancias predeterminadas. Esta aplicación tiene el potencial para estimar si quien conduce está mirando hacia una zona específica que otra aplicación que detecta objetos, animales y peatones ha remarcado como importante. Aunque en el mercado existen tecnologías disponibles capaces de supervisar al conductor, estas tienen un coste prohibitivo para cierto grupo de clientela debido a que no es un producto popular (comparado con otros dispositivos para el hogar o de entretenimiento) ni existe un mercado con alta oferta y demanda de dichos dispositivos. Muchas de estas tecnologías requieren de dispositivos externos e invasivos (colocarle al conductor uno o más sensores en el cuerpo) que podrían interferir con la naturaleza de los movimientos propios de la conducción bajo condiciones sin supervisar. Las aplicaciones actuales basadas en visión por computador toman ventaja de los últimos desarrollos de la tecnología informática y el incremento en poder computacional para crear aplicaciones que se ajustan al criterio de un método no invasivo para aplicarlo a la supervisión del conductor. Tecnologías como cámaras estéreo y del tipo “tiempo de vuelo” son capaces de sobrepasar algunas de las dificultades relacionadas a las aplicaciones de visión por computador como condiciones extremas de iluminación (diurna y nocturna), saturación de los sensores de color y la falta de información de profundidad. Es cierto que la combinación y fusión de sensores puede resolver este problema por medio de múltiples escaneos de diferentes zonas o combinando la información obtenida de diversos dispositivos pero esto requeriría un paso adicional de calibración, posicionamiento e involucra un factor de dependencia de la aplicación hacia no uno sino los múltiples sensores involucrados ya que si uno de ellos falla, los resultados podrían no ser correctos. Recientemente han aparecido en el mercado de los videojuego algunos sensores, como es el caso de la barra de sensores Kinect de Microsoft, dispositivo de bajo coste, que ofrece información 3D junto con otras características adicionales y sin la necesidad de sistemas complejos de sistemas manufacturados que pueden fallar como se ha mencionado anteriormente. La solución propuesta en esta tesis supervisa al conductor por medio del uso de información diversa del sensor Kinect (información de profundidad, imágenes de color en espectro visible y en espectro infrarrojo). La fusión de información de diversas fuentes permite el uso de algoritmos en 2D y 3D con el objetivo de proveer una detección facial confiable, estimación de postura precisa y detección de características faciales como los ojos y la nariz. El sistema comparará, con una velocidad promedio superior a 10Hz, la captura inicial de la cara con el resto de las imágenes de video, la comparación la hará por medio de un algoritmo iterativo previamente configurado comprometido con el balance entre velocidad y precisión. Con tal de determinar la fiabilidad y precisión del sistema propuesto, diversas pruebas fueron realizadas para el algoritmo de estimación de postura de la cabeza con una unidad de medidas inerciales (IMU por sus siglas en inglés) situada en la parte trasera de la cabeza de los sujetos que participaron en los ensayos. Las medidas inerciales provistas por la IMU fueron usadas como punto de referencia para las pruebas de los tres grados de libertad de movimiento. Finalmente, los resultados de las pruebas fueron comparados con aquellos disponibles en la literatura actual para comprobar el rendimiento del algoritmo aquí presentado. Estimar la orientación de la cabeza es la función principal de esta propuesta ya que es la que más aporta información para la estimación del comportamiento del conductor. Sea para tener una primera estimación si ve hacia el frente o si presenta señales de fatiga al cabecear hacia abajo. Acompañando a esta herramienta, está el análisis de la imagen a color que se encargará del estudio de los ojos. A partir de dicho estudio, se podrá estimar hacia donde está viendo el conductor según la posición de la pupila. La orientación de la mirada ayudaría, junto con la orientación de la cabeza, a saber hacia dónde ve el conductor. La estimación de la orientación de la mirada es una herramienta de soporte que complementa la orientación de la cabeza. Otra forma de determinar una situación de riesgo es con el análisis de la apertura de los ojos. A través del estudio del patrón de parpadeo en el conductor durante un determinado tiempo se puede estimar si se encuentra cansado. De ser así, el conductor aumenta las posibilidades de causar un accidente debido a la somnolencia. La parte de la solución que se encarga de resolver este problema analizará un ojo del conductor para estimar si se encuentra cerrado o abierto de acuerdo al análisis de regiones de interés en la imagen. Una vez determinado el estado del ojo, se procederá a hacer un análisis durante un determinado tiempo para saber si el ojo ha estado mayormente cerrado o abierto y estimar de forma más acertada si se está quedando dormido o no. Estos 2 módulos, el detector de somnolencia y el análisis de la mirada complementarán la estimación de la orientación de la cabeza con el objetivo de brindar mayor certeza acerca del estado del conductor y, de ser posible, prevenir un accidente debido a malos comportamientos. Es importante mencionar que el sensor Kinect está construido específicamente para el uso dentro de una habitación y conectado a una videoconsola, no para el exterior. Por lo tanto, es inevitable que algunas limitaciones salgan a luz cuando se realice la monitorización bajo condiciones reales de conducción. Dichos problemas serán mencionados en esta propuesta. Sin embargo, el algoritmo presentado es generalizable a cualquier sensor basado en nubes de puntos (cámaras estéreo, cámaras del tipo “time of flight”, escáneres láseres etc...); más caros pero menos sensibles a estos inconvenientes previamente descritos. Se mencionan también trabajos futuros al final con el objetivo de enseñar la escalabilidad de esta propuesta.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Andrés Iborra García.- Secretario: Francisco José Rodríguez Urbano.- Vocal: José Manuel Pastor Garcí

    Controlled Descent of an Overloaded Quadcopter Using Vision

    Get PDF

    Bridge Structrural Health Monitoring Using a Cyber-Physical System Framework

    Full text link
    Highway bridges are critical infrastructure elements supporting commercial and personal traffic. However, bridge deterioration coupled with insufficient funding for bridge maintenance remain a chronic problem faced by the United States. With the emergence of wireless sensor networks (WSN), structural health monitoring (SHM) has gained increasing attention over the last decade as a viable means of assessing bridge structural conditions. While intensive research has been conducted on bridge SHM, few studies have clearly demonstrated the value of SHM to bridge owners, especially using real-world implementation in operational bridges. This thesis first aims to enhance existing bridge SHM implementations by developing a cyber-physical system (CPS) framework that integrates multiple SHM systems with traffic cameras and weigh-in-motion (WIM) stations located along the same corridor. To demonstrate the efficacy of the proposed CPS, a 20-mile segment of the northbound I-275 highway in Michigan is instrumented with four traffic cameras, two bridge SHM systems and a WIM station. Real-time truck detection algorithms are deployed to intelligently trigger the SHM systems for data collection during large truck events. Such a triggering approach can improve data acquisition efficiency by up to 70% (as compared to schedule-based data collection). Leveraging computer vision-based truck re-identification techniques applied to videos from the traffic cameras along the corridor, a two-stage pipeline is proposed to fuse bridge input data (i.e. truck loads as measured by the WIM station) and output data (i.e. bridge responses to a given truck load). From August 2017 to April 2019, over 20,000 truck events have been captured by the CPS. To the author’s best knowledge, the CPS implementation is the first of its kind in the nation and offers large volume of heterogeneous input-output data thereby opening new opportunities for novel data-driven bridge condition assessment methods. Built upon the developed CPS framework, the second half of the thesis focuses on use of the data in real-world bridge asset management applications. Long-term bridge strain response data is used to investigate and model composite action behavior exhibited in slab-on-girder highway bridges. Partial composite action is observed and quantified over negative bending regions of the bridge through the monitoring of slip strain at the girder-deck interface. It is revealed that undesired composite action over negative bending regions might be a cause of deck deterioration. The analysis performed on modeling composite action is a first in studying composite behavior in operational bridges with in-situ SHM measurements. Second, a data-driven analytical method is proposed to derive site-specific parameters such as dynamic load allowance and unit influence lines for bridge load rating using the input-output data. The resulting rating factors more rationally account for the bridge's systematic behavior leading to more accurate rating of a bridge's load-carrying capacity. Third, the proposed CPS framework is shown capable of measuring highway traffic loads. The paired WIM and bridge response data is used for training a learning-based bridge WIM system where truck weight characteristics such as axle weights are derived directly using corresponding bridge response measurements. Such an approach is successfully utilized to extend the functionality of an existing bridge SHM system for truck weighing purposes achieving precision requirements of a Type-II WIM station (e.g. vehicle gross weight error of less than 15%).PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163210/1/rayhou_1.pd
    corecore