21,255 research outputs found

    A proposal for broad spectrum proof certificates

    Get PDF
    International audienceRecent developments in the theory of focused proof systems provide flexible means for structuring proofs within the sequent calculus. This structuring is organized around the construction of ''macro'' level inference rules based on the ''micro'' inference rules which introduce single logical connectives. After presenting focused proof systems for first-order classical logics (one with and one without fixed points and equality) we illustrate several examples of proof certificates formats that are derived naturally from the structure of such focused proof systems. In principle, a proof certificate contains two parts: the first part describes how macro rules are defined in terms of micro rules and the second part describes a particular proof object using the macro rules. The first part, which is based on the vocabulary of focused proof systems, describes a collection of macro rules that can be used to directly present the structure of proof evidence captured by a particular class of computational logic systems. While such proof certificates can capture a wide variety of proof structures, a proof checker can remain simple since it must only understand the micro-rules and the discipline of focusing. Since proofs and proof certificates are often likely to be large, there must be some flexibility in allowing proof certificates to elide subproofs: as a result, proof checkers will necessarily be required to perform (bounded) proof search in order to reconstruct missing subproofs. Thus, proof checkers will need to do unification and restricted backtracking search

    A framework for proof certificates in finite state exploration

    Get PDF
    Model checkers use automated state exploration in order to prove various properties such as reachability, non-reachability, and bisimulation over state transition systems. While model checkers have proved valuable for locating errors in computer models and specifications, they can also be used to prove properties that might be consumed by other computational logic systems, such as theorem provers. In such a situation, a prover must be able to trust that the model checker is correct. Instead of attempting to prove the correctness of a model checker, we ask that it outputs its "proof evidence" as a formally defined document--a proof certificate--and that this document is checked by a trusted proof checker. We describe a framework for defining and checking proof certificates for a range of model checking problems. The core of this framework is a (focused) proof system that is augmented with premises that involve "clerk and expert" predicates. This framework is designed so that soundness can be guaranteed independently of any concerns for the correctness of the clerk and expert specifications. To illustrate the flexibility of this framework, we define and formally check proof certificates for reachability and non-reachability in graphs, as well as bisimulation and non-bisimulation for labeled transition systems. Finally, we describe briefly a reference checker that we have implemented for this framework.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    A Decentralised Digital Identity Architecture

    Get PDF
    Current architectures to validate, certify, and manage identity are based on centralised, top-down approaches that rely on trusted authorities and third-party operators. We approach the problem of digital identity starting from a human rights perspective, with a primary focus on identity systems in the developed world. We assert that individual persons must be allowed to manage their personal information in a multitude of different ways in different contexts and that to do so, each individual must be able to create multiple unrelated identities. Therefore, we first define a set of fundamental constraints that digital identity systems must satisfy to preserve and promote privacy as required for individual autonomy. With these constraints in mind, we then propose a decentralised, standards-based approach, using a combination of distributed ledger technology and thoughtful regulation, to facilitate many-to-many relationships among providers of key services. Our proposal for digital identity differs from others in its approach to trust in that we do not seek to bind credentials to each other or to a mutually trusted authority to achieve strong non-transferability. Because the system does not implicitly encourage its users to maintain a single aggregated identity that can potentially be constrained or reconstructed against their interests, individuals and organisations are free to embrace the system and share in its benefits.Comment: 30 pages, 10 figures, 3 table

    Defining the meaning of TPTP formatted proofs

    Get PDF
    International audienceThe TPTP library is one of the leading problem libraries in the automated theorem proving community. Over time, support was added for problems beyond those in first-order clausal form. TPTP has also been augmented with support for various proof formats output by theorem provers. Such proofs can also be maintained in the TSTP proof library. In this paper we propose an extension of this framework to support the semantic specification of the inference rules used in proofs

    Checking Zenon Modulo Proofs in Dedukti

    Get PDF
    Dedukti has been proposed as a universal proof checker. It is a logical framework based on the lambda Pi calculus modulo that is used as a backend to verify proofs coming from theorem provers, especially those implementing some form of rewriting. We present a shallow embedding into Dedukti of proofs produced by Zenon Modulo, an extension of the tableau-based first-order theorem prover Zenon to deduction modulo and typing. Zenon Modulo is applied to the verification of programs in both academic and industrial projects. The purpose of our embedding is to increase the confidence in automatically generated proofs by separating untrusted proof search from trusted proof verification.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure
    • …
    corecore