4,118 research outputs found

    Optimization flow control -- I: Basic algorithm and convergence

    Get PDF
    We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property

    Performance and Buffering Requirements of Internet Protocols over ATM ABR and UBR Services

    Full text link
    The Asynchronous Transfer Mode (ATM) networks are quickly being adopted as backbones over various parts of the Internet. This paper analyzes the performance of TCP/IP protocols over ATM network's Available Bit Rate (ABR) and Unspecified Bit Rate (UBR) services. It is shown that ABR pushes congestion to the edges of the ATM network while UBR leaves it inside the ATM portion.Comment: IEEE Communications Magazine, Vol 36, no 6, pp152-15

    Application-Oriented Flow Control: Fundamentals, Algorithms and Fairness

    Get PDF
    This paper is concerned with flow control and resource allocation problems in computer networks in which real-time applications may have hard quality of service (QoS) requirements. Recent optimal flow control approaches are unable to deal with these problems since QoS utility functions generally do not satisfy the strict concavity condition in real-time applications. For elastic traffic, we show that bandwidth allocations using the existing optimal flow control strategy can be quite unfair. If we consider different QoS requirements among network users, it may be undesirable to allocate bandwidth simply according to the traditional max-min fairness or proportional fairness. Instead, a network should have the ability to allocate bandwidth resources to various users, addressing their real utility requirements. For these reasons, this paper proposes a new distributed flow control algorithm for multiservice networks, where the application's utility is only assumed to be continuously increasing over the available bandwidth. In this, we show that the algorithm converges, and that at convergence, the utility achieved by each application is well balanced in a proportionally (or max-min) fair manner

    Structural instability in an autophosphorylating kinase switch

    Get PDF
    We analyse a simple kinase model that exhibits bistability when there is no protein turnover, and show analytically that the property of being bistable is not necessarily conserved when degradation and synthesis of the kinase are taken into account

    Congestion Control and Traffic Management in ATM Networks: Recent Advances and A Survey

    Full text link
    Congestion control mechanisms for ATM networks as selected by the ATM Forum traffic management group are described. Reasons behind these selections are explained. In particular, selection criteria for selection between rate-based and credit-based approach and the key points of the debate between the two approaches are presented. The approach that was finally selected and several other schemes that were considered are described.Comment: Invited submission to Computer Networks and ISDN System
    • …
    corecore