2,420 research outputs found

    A Systematic Approach to Constructing Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    Communication networks form the backbone of our society. Topology control algorithms optimize the topology of such communication networks. Due to the importance of communication networks, a topology control algorithm should guarantee certain required consistency properties (e.g., connectivity of the topology), while achieving desired optimization properties (e.g., a bounded number of neighbors). Real-world topologies are dynamic (e.g., because nodes join, leave, or move within the network), which requires topology control algorithms to operate in an incremental way, i.e., based on the recently introduced modifications of a topology. Visual programming and specification languages are a proven means for specifying the structure as well as consistency and optimization properties of topologies. In this paper, we present a novel methodology, based on a visual graph transformation and graph constraint language, for developing incremental topology control algorithms that are guaranteed to fulfill a set of specified consistency and optimization constraints. More specifically, we model the possible modifications of a topology control algorithm and the environment using graph transformation rules, and we describe consistency and optimization properties using graph constraints. On this basis, we apply and extend a well-known constructive approach to derive refined graph transformation rules that preserve these graph constraints. We apply our methodology to re-engineer an established topology control algorithm, kTC, and evaluate it in a network simulation study to show the practical applicability of our approachComment: This document corresponds to the accepted manuscript of the referenced journal articl

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    An Approach to Relate Viewpoints and Modeling Languages

    Get PDF
    The architectural design of distributed enterprise applications from the viewpoints of different stakeholders has been proposed for some time, for example, as part of RM-ODP and IEEE 1471, and seems now-a-days to gain acceptance in practice. However, much work remains to be done on the relationships between different viewpoints. Failing to relate viewpoints may lead to a collection of viewpoint models that is inconsistent, and may therefore lead to an incorrect implementation. This paper defines an approach that helps designers to relate different viewpoints to each other. Thereby, it helps to enforce the consistency of the overall design. The results of this paper are expected to be particularly interesting for Model Driven Architecture (MDA) projects, since the proposed models can be used for the explicit definition of the models and relationships between models in an MDA trajectory

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    WS-Pro: a Petri net based performance-driven service composition framework

    Get PDF
    As an emerging area gaining prevalence in the industry, Web Services was established to satisfy the needs for better flexibility and higher reliability in web applications. However, due to the lack of reliable frameworks and difficulties in constructing versatile service composition platform, web developers encountered major obstacles in large-scale deployment of web services. Meanwhile, performance has been one of the major concerns and a largely unexplored area in Web Services research. There is high demand for researchers to conceive and develop feasible solutions to design, monitor, and deploy web service systems that can adapt to failures, especially performance failures. Though many techniques have been proposed to solve this problem, none of them offers a comprehensive solution to overcome the difficulties that challenge practitioners. Central to the performance-engineering studies, performance analysis and performance adaptation are of paramount importance to the success of a software project. The industry learned through many hard lessons the significance of well-founded and well-executed performance engineering plans. An important fact is that it is too expensive to tackle performance evaluation, mostly through performance testing, after the software is developed. This is especially true in recent decades when software complexity has risen sharply. After the system is deployed, performance adaptation is essential to maintaining and improving software system reliability. Performance adaptation provides techniques to mitigate the consequence of performance failures and therefore is an important research issue. Performance adaptation is particularly meaningful for mission-critical software systems and software systems with inevitable frequent performance failures, such as Web Services. This dissertation focuses on Web Services framework and proposes a performance-driven service composition scheme, called WS-Pro, to support both performance analysis and performance adaptation. A formalism of transformation from WS-BPEL to Petri net is first defined to enable the analysis of system properties and facilitate quality prediction. A state-transition based proof is presented to show that the transformed Petri net model correctly simulates the behavior of the WS-BPEL process. The generated Petri net model was augmented using performance data supplied by both historical data and runtime data. Results of executing the Petri nets suggest that optimal composition plans can be achieved based on the proposed method. The performance of service composition procedure is an important research issue which has not been sufficiently treated by researchers. However, such an issue is critical for dynamic service composition, where re-planning must be done in a timely manner. In order to improve the performance of service composition procedure and enhance performance adaptation, this dissertation presents an algorithm to remove loops in the reachability graphs so that a large portion of the computation time of service composition can be moved to a pre-processing unit; hence the response time is shortened during runtime. We also extended the WS-Pro to the ubiquitous computing area to improve fault-tolerance

    A model driven approach to analysis and synthesis of sequence diagrams

    Get PDF
    Software design is a vital phase in a software development life cycle as it creates a blueprint for the implementation of the software. It is crucial that software designs are error-free since any unresolved design-errors could lead to costly implementation errors. To minimize these errors, the software community adopted the concept of modelling from various other engineering disciplines. Modelling provides a platform to create and share abstract or conceptual representations of the software system – leading to various modelling languages, among them Unified Modelling Language (UML) and Petri Nets. While Petri Nets strong mathematical capability allows various formal analyses to be performed on the models, UMLs user-friendly nature presented a more appealing platform for system designers. Using Multi Paradigm Modelling, this thesis presents an approach where system designers may have the best of both worlds; SD2PN, a model transformation that maps UML Sequence Diagrams into Petri Nets allows system designers to perform modelling in UML while still using Petri Nets to perform the analysis. Multi Paradigm Modelling also provided a platform for a well-established theory in Petri Nets – synthesis to be adopted into Sequence Diagram as a method of putting-together different Sequence Diagrams based on a set of techniques and algorithms

    A formal support to business and architectural design for service-oriented systems

    Get PDF
    Architectural Design Rewriting (ADR) is an approach for the design of software architectures developed within Sensoria by reconciling graph transformation and process calculi techniques. The key feature that makes ADR a suitable and expressive framework is the algebraic handling of structured graphs, which improves the support for specification, analysis and verification of service-oriented architectures and applications. We show how ADR is used as a formal ground for high-level modelling languages and approaches developed within Sensoria
    • …
    corecore