292 research outputs found

    Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding

    Get PDF
    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of FILT in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find FILT to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of FILT to be consistent with that of the highly efficient E-learning Chronotron, but with the distinct advantage that FILT is also implementable as an online method for increased biological realism.Comment: 26 pages, 10 figures, this version is published in PLoS ONE and incorporates reviewer comment

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Memristors -- from In-memory computing, Deep Learning Acceleration, Spiking Neural Networks, to the Future of Neuromorphic and Bio-inspired Computing

    Full text link
    Machine learning, particularly in the form of deep learning, has driven most of the recent fundamental developments in artificial intelligence. Deep learning is based on computational models that are, to a certain extent, bio-inspired, as they rely on networks of connected simple computing units operating in parallel. Deep learning has been successfully applied in areas such as object/pattern recognition, speech and natural language processing, self-driving vehicles, intelligent self-diagnostics tools, autonomous robots, knowledgeable personal assistants, and monitoring. These successes have been mostly supported by three factors: availability of vast amounts of data, continuous growth in computing power, and algorithmic innovations. The approaching demise of Moore's law, and the consequent expected modest improvements in computing power that can be achieved by scaling, raise the question of whether the described progress will be slowed or halted due to hardware limitations. This paper reviews the case for a novel beyond CMOS hardware technology, memristors, as a potential solution for the implementation of power-efficient in-memory computing, deep learning accelerators, and spiking neural networks. Central themes are the reliance on non-von-Neumann computing architectures and the need for developing tailored learning and inference algorithms. To argue that lessons from biology can be useful in providing directions for further progress in artificial intelligence, we briefly discuss an example based reservoir computing. We conclude the review by speculating on the big picture view of future neuromorphic and brain-inspired computing systems.Comment: Keywords: memristor, neuromorphic, AI, deep learning, spiking neural networks, in-memory computin

    Learning without feedback: Fixed random learning signals allow for feedforward training of deep neural networks

    Full text link
    While the backpropagation of error algorithm enables deep neural network training, it implies (i) bidirectional synaptic weight transport and (ii) update locking until the forward and backward passes are completed. Not only do these constraints preclude biological plausibility, but they also hinder the development of low-cost adaptive smart sensors at the edge, as they severely constrain memory accesses and entail buffering overhead. In this work, we show that the one-hot-encoded labels provided in supervised classification problems, denoted as targets, can be viewed as a proxy for the error sign. Therefore, their fixed random projections enable a layerwise feedforward training of the hidden layers, thus solving the weight transport and update locking problems while relaxing the computational and memory requirements. Based on these observations, we propose the direct random target projection (DRTP) algorithm and demonstrate that it provides a tradeoff between accuracy and computational cost that is suitable for adaptive edge computing devices.Comment: This document is the paper as accepted for publication in the Frontiers in Neuroscience journal, the fully-edited paper is available at https://www.frontiersin.org/articles/10.3389/fnins.2021.62989

    Exact Gradient Computation for Spiking Neural Networks Through Forward Propagation

    Full text link
    Spiking neural networks (SNN) have recently emerged as alternatives to traditional neural networks, owing to energy efficiency benefits and capacity to better capture biological neuronal mechanisms. However, the classic backpropagation algorithm for training traditional networks has been notoriously difficult to apply to SNN due to the hard-thresholding and discontinuities at spike times. Therefore, a large majority of prior work believes exact gradients for SNN w.r.t. their weights do not exist and has focused on approximation methods to produce surrogate gradients. In this paper, (1) by applying the implicit function theorem to SNN at the discrete spike times, we prove that, albeit being non-differentiable in time, SNNs have well-defined gradients w.r.t. their weights, and (2) we propose a novel training algorithm, called \emph{forward propagation} (FP), that computes exact gradients for SNN. FP exploits the causality structure between the spikes and allows us to parallelize computation forward in time. It can be used with other algorithms that simulate the forward pass, and it also provides insights on why other related algorithms such as Hebbian learning and also recently-proposed surrogate gradient methods may perform well
    corecore