58 research outputs found

    A Proof of Kamp's theorem

    Full text link
    We provide a simple proof of Kamp's theorem

    A Proof of Stavi's Theorem

    Full text link
    Kamp's theorem established the expressive equivalence of the temporal logic with Until and Since and the First-Order Monadic Logic of Order (FOMLO) over the Dedekind-complete time flows. However, this temporal logic is not expressively complete for FOMLO over the rationals. Stavi introduced two additional modalities and proved that the temporal logic with Until, Since and Stavi's modalities is expressively equivalent to FOMLO over all linear orders. We present a simple proof of Stavi's theorem.Comment: arXiv admin note: text overlap with arXiv:1401.258

    The complexity of linear-time temporal logic over the class of ordinals

    Full text link
    We consider the temporal logic with since and until modalities. This temporal logic is expressively equivalent over the class of ordinals to first-order logic by Kamp's theorem. We show that it has a PSPACE-complete satisfiability problem over the class of ordinals. Among the consequences of our proof, we show that given the code of some countable ordinal alpha and a formula, we can decide in PSPACE whether the formula has a model over alpha. In order to show these results, we introduce a class of simple ordinal automata, as expressive as B\"uchi ordinal automata. The PSPACE upper bound for the satisfiability problem of the temporal logic is obtained through a reduction to the nonemptiness problem for the simple ordinal automata.Comment: Accepted for publication in LMC

    Specifying message passing systems requires extending temporal logic

    Get PDF

    A first-order logic characterization of safety and co-safety languages

    Full text link
    Linear Temporal Logic (LTL) is one of the most popular temporal logics, that comes into play in a variety of branches of computer science. Among the various reasons of its widespread use there are its strong foundational properties: LTL is equivalent to counter-free omega-automata, to star-free omega-regular expressions, and (by Kamp's theorem) to the first-order theory of one successor (S1S[FO]). Safety and co-safety languages, where a finite prefix suffices to establish whether a word does not belong or belongs to the language, respectively, play a crucial role in lowering the complexity of problems like model checking and reactive synthesis for LTL. SafetyLTL (resp., coSafetyLTL) is a fragment of LTL where only universal (resp., existential) temporal modalities are allowed, that recognises safety (resp., co-safety) languages only. The main contribution of this paper is the introduction of a fragment of S1S[FO], called SafetyFO, and of its dual coSafetyFO, which are expressively complete with respect to the LTL-definable safety and co-safety languages. We prove that they exactly characterize SafetyLTL and coSafetyLTL, respectively, a result that joins Kamp's theorem, and provides a clearer view of the characterization of (fragments of) LTL in terms of first-order languages. In addition, it gives a direct, compact, and self-contained proof that any safety language definable in LTL is definable in SafetyLTL as well. As a by-product, we obtain some interesting results on the expressive power of the weak tomorrow operator of SafetyLTL, interpreted over finite and infinite words. Moreover, we prove that, when interpreted over finite words, SafetyLTL (resp. coSafetyLTL) devoid of the tomorrow (resp., weak tomorrow) operator captures the safety (resp., co-safety) fragment of LTL over finite words

    Hierarchies of modal and temporal logics with reference pointers

    Get PDF
    . We introduce and study hierarchies of extensions of the propositional modal and temporal languages with pairs of new syntactic devices: "point of reference --- reference pointer" which enable semantic references to be made within a formula. We propose three different but equivalent semantics for the extended languages, discuss and compare their expressiveness. The languages with reference pointers are shown to have great expressive power (especially when their frugal syntax is taken into account), perspicuous semantics, and simple deductive systems. For instance, Kamp's and Stavi's temporal operators, as well as nominals (names, clock variables), are definable in them. The universal validity in these languages is proved undecidable. The basic modal and temporal logics with reference pointers are uniformly axiomatized and strong completeness theorem is proved for them and extended to some classes of their extensions. Key words: Modal and Temporal Logics, Reference Pointers, Expressi..

    A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes

    Get PDF
    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation

    Efficient Parsing for French

    Get PDF
    International audienceParsing with categorial grammars often leads to problems such as proliferating lexical ambiguity, spurious parses and overgeneration. This paper presents a parser for French developed on an unification based categorial grammar (FG) which avoids these problems. This parser is a bottom-up chart parser augmented with a heuristic eliminating spurious parses. The unicity and completeness of parsing are proved
    corecore