13,775 research outputs found

    A process algebra based framework for promise theory

    Full text link
    We present a process algebra based approach to formalize the interactions of computing devices such as the representation of policies and the resolution of conflicts. As an example we specify how promises may be used in coming to an agreement regarding a simple though practical transportation problem.Comment: 9 pages, 4 figure

    Emerging technologies for learning (volume 2)

    Get PDF

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    Forth Industrial Revolution (4 IR) : digital disruption of cyber-physical systems

    Get PDF
    Article focus of the disruptive character of technological innovations brought by Fourth Industrial Revolution (4IR), withits unprecedented scale and scope, and exponential speed of incoming innovations, described from the point view of 'unintended consequences' (cross cutting impact of disruptive technologies across many sectors and aspects of human life). With integration of technology innovations emerging in number of fields including advanced robotics, pervasive computing, artificial intelligence, nano-and bio-technologies, additive and smart manufacturing, Forth Industrial Revolution introduce new ways in which technology becomes embedded not only within the society, economy and culture, but also within human body and mind (described by integration of technologies, collectively referred to as cyber-physical systems). At the forefront of digital transformation, based on cyber physical systems, stands Industry 4.0, referring to recent technological advances, where internet and supporting technologies (embedded systems) are serving as framework to integrate physical objects, human actors, intelligent machines, production lines and processes across organizational boundaries to form new kind of intelligent, networked value chain, called smart factory. Article presents broader context of 'disruptive changes (innovations)' accompanying 4IR, that embrace both economical perspective of 'broaderrestructuring' of modern economy and society (described in second part of the article as transition from second to third and forth industrial revolution), and technological perspective of computer and informational science with advances in pervasive computing, algorithms and artificial intelligence (described in third part of article with different stages of web development : web 1.0, web 2.0, web 3.0, web 4.0). What's more important, article presents hardly ever described in literature, psychological and philosophical perspective, more or less subtle reconfiguration made under the influence of these technologies, determining physical (body), psychological (mind) and philosophical aspect of human existence (the very idea of what it means to be the human), fully depicted in the conclusion of the article. The core element (novelty) is the attempt to bring full understanding and acknowledgment of disruptive innovations', that "change not only of the what and the how things are done, but also the who we are", moving beyond economical or technological perspective, to embrace also psychological and philosophical one

    2011 Strategic roadmap for Australian research infrastructure

    Get PDF
    The 2011 Roadmap articulates the priority research infrastructure areas of a national scale (capability areas) to further develop Australia’s research capacity and improve innovation and research outcomes over the next five to ten years. The capability areas have been identified through considered analysis of input provided by stakeholders, in conjunction with specialist advice from Expert Working Groups   It is intended the Strategic Framework will provide a high-level policy framework, which will include principles to guide the development of policy advice and the design of programs related to the funding of research infrastructure by the Australian Government. Roadmapping has been identified in the Strategic Framework Discussion Paper as the most appropriate prioritisation mechanism for national, collaborative research infrastructure. The strategic identification of Capability areas through a consultative roadmapping process was also validated in the report of the 2010 NCRIS Evaluation. The 2011 Roadmap is primarily concerned with medium to large-scale research infrastructure. However, any landmark infrastructure (typically involving an investment in excess of $100 million over five years from the Australian Government) requirements identified in this process will be noted. NRIC has also developed a ‘Process to identify and prioritise Australian Government landmark research infrastructure investments’ which is currently under consideration by the government as part of broader deliberations relating to research infrastructure. NRIC will have strategic oversight of the development of the 2011 Roadmap as part of its overall policy view of research infrastructure

    On Agent-Based Software Engineering

    Get PDF
    Agent-based computing represents an exciting new synthesis both for Artificial Intelligence (AI) and, more generally, Computer Science. It has the potential to significantly improve the theory and the practice of modeling, designing, and implementing computer systems. Yet, to date, there has been little systematic analysis of what makes the agent-based approach such an appealing and powerful computational model. Moreover, even less effort has been devoted to discussing the inherent disadvantages that stem from adopting an agent-oriented view. Here both sets of issues are explored. The standpoint of this analysis is the role of agent-based software in solving complex, real-world problems. In particular, it will be argued that the development of robust and scalable software systems requires autonomous agents that can complete their objectives while situated in a dynamic and uncertain environment, that can engage in rich, high-level social interactions, and that can operate within flexible organisational structures
    corecore