1,373 research outputs found

    A Practical Type Analysis for Verification of Modular Prolog Programs

    Get PDF
    Regular types are a powerful tool for computing very precise descriptive types for logic programs. However, in the context of real life, modular Prolog programs, the accurate results obtained by regular types often come at the price of efficiency. In this paper we propose a combination of techniques aimed at improving analysis efficiency in this context. As a first technique we allow optionally reducing the accuracy of inferred types by using only the types defined by the user or present in the libraries. We claim that, for the purpose of verifying type signatures given in the form of assertions the precision obtained using this approach is sufficient, and show that analysis times can be reduced significantly. Our second technique is aimed at dealing with situations where we would like to limit the amount of reanalysis performed, especially for library modules. Borrowing some ideas from polymorphic type systems, we show how to solve the problem by admitting parameters in type specifications. This allows us to compose new call patterns with some pre computed analysis info without losing any information. We argue that together these two techniques contribute to the practical and scalable analysis and verification of types in Prolog programs

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    Diagnose network failures via data-plane analysis

    Get PDF
    Diagnosing problems in networks is a time-consuming and error-prone process. Previous tools to assist operators primarily focus on analyzing control plane configuration. Configuration analysis is limited in that it cannot find bugs in router software, and is harder to generalize across protocols since it must model complex configuration languages and dynamic protocol behavior. This paper studies an alternate approach: diagnosing problems through static analysis of the data plane. This approach can catch bugs that are invisible at the level of configuration files, and simplifies unified analysis of a network across many protocols and implementations. We present Anteater, a tool for checking invariants in the data plane. Anteater translates high-level network invariants into boolean satisfiability problems, checks them against network state using a SAT solver, and reports counterexamples if violations have been found. Applied to a large campus network, Anteater revealed 23 bugs, including forwarding loops and stale ACL rules, with only five false positives. Nine of these faults are being fixed by campus network operators

    An automated verfication tool for expert systems

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaf 47).by Alexandra Y. Pau.M.Eng

    The development of a program analysis environment for Ada

    Get PDF
    A unit level, Ada software module testing system, called Query Utility Environment for Software Testing of Ada (QUEST/Ada), is described. The project calls for the design and development of a prototype system. QUEST/Ada design began with a definition of the overall system structure and a description of component dependencies. The project team was divided into three groups to resolve the preliminary designs of the parser/scanner: the test data generator, and the test coverage analyzer. The Phase 1 report is a working document from which the system documentation will evolve. It provides history, a guide to report sections, a literature review, the definition of the system structure and high level interfaces, descriptions of the prototype scope, the three major components, and the plan for the remainder of the project. The appendices include specifications, statistics, two papers derived from the current research, a preliminary users' manual, and the proposal and work plan for Phase 2

    Formal Modeling of Connectionism using Concurrency Theory, an Approach Based on Automata and Model Checking

    Get PDF
    This paper illustrates a framework for applying formal methods techniques, which are symbolic in nature, to specifying and verifying neural networks, which are sub-symbolic in nature. The paper describes a communicating automata [Bowman & Gomez, 2006] model of neural networks. We also implement the model using timed automata [Alur & Dill, 1994] and then undertake a verification of these models using the model checker Uppaal [Pettersson, 2000] in order to evaluate the performance of learning algorithms. This paper also presents discussion of a number of broad issues concerning cognitive neuroscience and the debate as to whether symbolic processing or connectionism is a suitable representation of cognitive systems. Additionally, the issue of integrating symbolic techniques, such as formal methods, with complex neural networks is discussed. We then argue that symbolic verifications may give theoretically well-founded ways to evaluate and justify neural learning systems in the field of both theoretical research and real world applications

    Systems, methods and apparatus for verification of knowledge-based systems

    Get PDF
    Systems, methods and apparatus are provided through which in some embodiments, domain knowledge is translated into a knowledge-based system. In some embodiments, a formal specification is derived from rules of a knowledge-based system, the formal specification is analyzed, and flaws in the formal specification are used to identify and correct errors in the domain knowledge, from which a knowledge-based system is translated
    corecore