838 research outputs found

    Recent Advancements in Augmented Reality for Robotic Applications: A Survey

    Get PDF
    Robots are expanding from industrial applications to daily life, in areas such as medical robotics, rehabilitative robotics, social robotics, and mobile/aerial robotics systems. In recent years, augmented reality (AR) has been integrated into many robotic applications, including medical, industrial, human–robot interactions, and collaboration scenarios. In this work, AR for both medical and industrial robot applications is reviewed and summarized. For medical robot applications, we investigated the integration of AR in (1) preoperative and surgical task planning; (2) image-guided robotic surgery; (3) surgical training and simulation; and (4) telesurgery. AR for industrial scenarios is reviewed in (1) human–robot interactions and collaborations; (2) path planning and task allocation; (3) training and simulation; and (4) teleoperation control/assistance. In addition, the limitations and challenges are discussed. Overall, this article serves as a valuable resource for working in the field of AR and robotic research, offering insights into the recent state of the art and prospects for improvement

    Smart operators: How augmented and virtual technologies are affecting the worker's performance in manufacturing contexts

    Get PDF
    Purpose: The correct interaction between the workforce and augmented, virtual, and mixed reality technologies represents a crucial aspect of the success of the smart factory. This interaction is, indeed, affected by the variability of human behavior and its reliability, which can strongly influence the quality, safety, and productivity standards. For this reason, this paper aims to provide a clear and complete analysis of the impacts of these technologies on the performance of operators. Design/methodology/approach: A Systematic Literature Review (SLR) was conducted to identify peer-reviewed papers that focused on the implementation of augmented and virtual technologies in manufacturing systems and their effects on human performance. Findings: In total, 61 papers were selected and thoroughly analyzed. The findings of this study reveal that Augmented, Virtual and Mixed Reality can be applied for several applications in manufacturing systems with different types of devices, that involve various advantages and disadvantages. The worker’s performance that are influencing by the use of these technologies are above all time to complete a task, error rate and mental and physical workload. Originality/value: Over the years Augmented, Virtual and Mixed Reality technologies in manufacturing systems have been investigated by researchers. Several studies mostly focused on technological issues, have been conducted. The role of the operator, whose tasks may be influenced positively or negatively by the use of new devices, has been hardly ever analyzed and a deep analysis of human performance affected by these technologies is missing. This study represents a preliminary analysis to fill this gap. The results obtained from the SLR allowed us to develop a conceptual framework that investigates the current state-of-the-art knowledge about the topic and highlights gaps in the current researchPeer Reviewe

    A novel augmented laser pointer interface and shared autonomy paradigm to enable object retrieval via an assistive robot

    Full text link
    Assistive robots have the potential to enable persons with motor disabilities to live more independent lives. Object retrieval has been rated a high-priority task for assistive robots. A key challenge in creating effective assistive robots lies in designing control interfaces that enable the human user to control the robot. This thesis builds on prior work that uses a laser pointer to allow the person to intuitively communicate their goals to a robot by creating a `clickable world'. Specifically, this thesis reduces the infrastructure needed for the robot to recognize the user's goal by augmenting the laser pointer with a small camera, an inertial measurement unit (IMU), and a laser rangefinder to estimate the location of the object to be grasped. The robot then drives to the approximate target location given by input from the laser pointer while using an onboard camera to detect an object near the target location. Local autonomy on the robot is used to visually navigate to the detected object to enable object retrieval. Results show a successful proof of concept in demonstrating reasonable detection of user intent on a 1.23 x 1.83 meters squared test grid. Testing of the estimation of object location in the odometry frame fell within range of successful local autonomy object retrieval for an environment with a single object. Future work includes testing on a wide variety of dropped objects and in cluttered environments which is needed to validate the effectiveness of the system for potential end users

    Gesture Control of a Mobile Robot using Kinect Sensor

    Get PDF
    This paper describes a methodology for gesture control of a custom developed mobile robot, using body gestures and Microsoft Kinect sensor. The Microsoft Kinect sensor’s ability is to track joint positions has been used in order to develop software application gestures recognition and their mapping into control commands. The proposed methodology has been experimentally evaluated. The results of the experimental evaluation, presented in the paper, showed that the proposed methodology is accurate and reliable and it could be used for mobile robot control in practical applications

    AdaptiX -- A Transitional XR Framework for Development and Evaluation of Shared Control Applications in Assistive Robotics

    Full text link
    With the ongoing efforts to empower people with mobility impairments and the increase in technological acceptance by the general public, assistive technologies, such as collaborative robotic arms, are gaining popularity. Yet, their widespread success is limited by usability issues, specifically the disparity between user input and software control along the autonomy continuum. To address this, shared control concepts provide opportunities to combine the targeted increase of user autonomy with a certain level of computer assistance. This paper presents the free and open-source AdaptiX XR framework for developing and evaluating shared control applications in a high-resolution simulation environment. The initial framework consists of a simulated robotic arm with an example scenario in Virtual Reality (VR), multiple standard control interfaces, and a specialized recording/replay system. AdaptiX can easily be extended for specific research needs, allowing Human-Robot Interaction (HRI) researchers to rapidly design and test novel interaction methods, intervention strategies, and multi-modal feedback techniques, without requiring an actual physical robotic arm during the early phases of ideation, prototyping, and evaluation. Also, a Robot Operating System (ROS) integration enables the controlling of a real robotic arm in a PhysicalTwin approach without any simulation-reality gap. Here, we review the capabilities and limitations of AdaptiX in detail and present three bodies of research based on the framework. AdaptiX can be accessed at https://adaptix.robot-research.de.Comment: Accepted submission at The 16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS'24

    Augmented Reality and Robotics: A Survey and Taxonomy for AR-enhanced Human-Robot Interaction and Robotic Interfaces

    Get PDF
    This paper contributes to a taxonomy of augmented reality and robotics based on a survey of 460 research papers. Augmented and mixed reality (AR/MR) have emerged as a new way to enhance human-robot interaction (HRI) and robotic interfaces (e.g., actuated and shape-changing interfaces). Recently, an increasing number of studies in HCI, HRI, and robotics have demonstrated how AR enables better interactions between people and robots. However, often research remains focused on individual explorations and key design strategies, and research questions are rarely analyzed systematically. In this paper, we synthesize and categorize this research field in the following dimensions: 1) approaches to augmenting reality; 2) characteristics of robots; 3) purposes and benefits; 4) classification of presented information; 5) design components and strategies for visual augmentation; 6) interaction techniques and modalities; 7) application domains; and 8) evaluation strategies. We formulate key challenges and opportunities to guide and inform future research in AR and robotics

    Spatial Programming for Industrial Robots through Task Demonstration

    Get PDF
    We present an intuitive system for the programming of industrial robots using markerless gesture recognition and mobile augmented reality in terms of programming by demonstration. The approach covers gesture-based task definition and adaption by human demonstration, as well as task evaluation through augmented reality. A 3D motion tracking system and a handheld device establish the basis for the presented spatial programming system. In this publication, we present a prototype toward the programming of an assembly sequence consisting of several pick-and-place tasks. A scene reconstruction provides pose estimation of known objects with the help of the 2D camera of the handheld. Therefore, the programmer is able to define the program through natural bare-hand manipulation of these objects with the help of direct visual feedback in the augmented reality application. The program can be adapted by gestures and transmitted subsequently to an arbitrary industrial robot controller using a unified interface. Finally, we discuss an application of the presented spatial programming approach toward robot-based welding tasks

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning
    • …
    corecore