4,000 research outputs found

    C++ Templates as Partial Evaluation

    Full text link
    This paper explores the relationship between C++ templates and partial evaluation. Templates were designed to support generic programming, but unintentionally provided the ability to perform compile-time computations and code generation. These features are completely accidental, and as a result their syntax is awkward. By recasting these features in terms of partial evaluation, a much simpler syntax can be achieved. C++ may be regarded as a two-level language in which types are first-class values. Template instantiation resembles an offline partial evaluator. This paper describes preliminary work toward a single mechanism based on Partial Evaluation which unifies generic programming, compile-time computation and code generation. The language Catat is introduced to illustrate these ideas.Comment: 13 page

    A Rational Deconstruction of Landin's SECD Machine with the J Operator

    Full text link
    Landin's SECD machine was the first abstract machine for applicative expressions, i.e., functional programs. Landin's J operator was the first control operator for functional languages, and was specified by an extension of the SECD machine. We present a family of evaluation functions corresponding to this extension of the SECD machine, using a series of elementary transformations (transformation into continu-ation-passing style (CPS) and defunctionalization, chiefly) and their left inverses (transformation into direct style and refunctionalization). To this end, we modernize the SECD machine into a bisimilar one that operates in lockstep with the original one but that (1) does not use a data stack and (2) uses the caller-save rather than the callee-save convention for environments. We also identify that the dump component of the SECD machine is managed in a callee-save way. The caller-save counterpart of the modernized SECD machine precisely corresponds to Thielecke's double-barrelled continuations and to Felleisen's encoding of J in terms of call/cc. We then variously characterize the J operator in terms of CPS and in terms of delimited-control operators in the CPS hierarchy. As a byproduct, we also present several reduction semantics for applicative expressions with the J operator, based on Curien's original calculus of explicit substitutions. These reduction semantics mechanically correspond to the modernized versions of the SECD machine and to the best of our knowledge, they provide the first syntactic theories of applicative expressions with the J operator

    Automatic autoprojection of recursive equations with global variables and abstract data types

    Get PDF
    AbstractSelf-applicable partial evaluation has been implemented for half a decade now, but many problems remain open. This paper addresses and solves the problems of automating call unfolding, having an open-ended set of operators, and processing global variables updated by side effects. The problems of computation duplication and termination of residual programs are addressed and solved: residual programs never duplicate computations of the source program; residual programs do not terminate more often than source programs.This paper describes the automatic autoprojector (self-applicable partial evaluator) Similix; it handles programs with user-defined primitive abstract data type operators which may process global variables. Abstract data types make it possible to hide actual representations of data and prevent specializing operators over these representations. The formally sound treatment of global variables makes Similix fit well in an applicative order programming environment.We present a new method for automatic call unfolding which is simpler, faster, and sometimes more effective than existing methods: it requires neither recursion analysis of the source program, nor call graph analysis of the residual program.To avoid duplicating computations and preserve termination properties, we introduce an abstract interpretation of the source program, abstract occurence counting analysis, which is performed during preprocessing. We express it formally and simplify it

    A Transformation-Based Foundation for Semantics-Directed Code Generation

    Get PDF
    Interpreters and compilers are two different ways of implementing programming languages. An interpreter directly executes its program input. It is a concise definition of the semantics of a programming language and is easily implemented. A compiler translates its program input into another language. It is more difficult to construct, but the code that it generates runs faster than interpreted code. In this dissertation, we propose a transformation-based foundation for deriving compilers from semantic specifications in the form of four rules. These rules give apriori advice for staging, and allow explicit compiler derivation that would be less succinct with partial evaluation. When applied, these rules turn an interpreter that directly executes its program input into a compiler that emits the code that the interpreter would have executed. We formalize the language syntax and semantics to be used for the interpreter and the compiler, and also specify a notion of equality. It is then possible to precisely state the transformation rules and to prove both local and global correctness theorems. And although the transformation rules were developed so as to apply to an interpreter written in a denotational style, we consider how to modify non-denotational interpreters so that the rules apply. Finally, we illustrate these ideas by considering a larger example: a Prolog implementation

    Specializing Interpreters using Offline Partial Deduction

    No full text
    We present the latest version of the Logen partial evaluation system for logic programs. In particular we present new binding-types, and show how they can be used to effectively specialise a wide variety of interpreters.We show how to achieve Jones-optimality in a systematic way for several interpreters. Finally, we present and specialise a non-trivial interpreter for a small functional programming language. Experimental results are also presented, highlighting that the Logen system can be a good basis for generating compilers for high-level languages

    Strong Normalization by Type-Directed Partial Evaluation and Run-Time Code Generation (Preliminary Version)

    Get PDF
    We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long beta-eta-normal form. Caml uses a virtual machine and has the capability to load byte code at run time. Representing the long beta-eta-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time.We conclude this note with a preview of our current work on scalingup strong normalization by run-time code generation to the Camlmodule language

    Memoized zipper-based attribute grammars and their higher order extension

    Get PDF
    Attribute grammars are a powerfull, well-known formalism to implement and reason about programs which, by design, are conveniently modular. In this work we focus on a state of the art zipper-based embedding of classic attribute grammars and higher-order attribute grammars. We improve their execution performance through controlling attribute (re)evaluation by means of memoization techniques. We present the results of our optimizations by comparing their impact in various implementations of different, well-studied, attribute grammars and their Higher-Order extensions. (C) 2018 Elsevier B.V. All rights reserved.- (undefined

    Incremental Semantic Evaluation for Interactive Systems: Inertia, Pre-emption, and Relations

    Get PDF
    Although schemes for incremental semantic evaluation have been explored and refined for more than two decades, the demands of user interaction continue to outstrip the capabilities of these schemes. The feedback produced by a semantic evaluator must support the user's programming activities: it must be structured in a way that provides the user with meaningful insight into the program (directly, or via other tools in the environment) and it must be timely. In this paper we extend an incremental attribute evaluation scheme with three techniques to better meet these demands within the context of a modeless editing system with a flexible tool integration paradigm. Efficient evaluation in the presence of syntax errors (which arise often under modeless editing) is supported by giving semantic attributes inertia: a tendency to not change unless necessary. Pre-emptive evaluation helps to reduce the delays associated with a sequence of edits, allowing an evaluator to "keep pace" with the user. Relations provide a general means to capture semantic structure (for the user, other tools, and as attributes within an evaluation) and are treated efficiently using a form of differential propagation. The combination of these three techniques meets the demands of user interaction; leaving out any one does not
    • ā€¦
    corecore