3,087 research outputs found

    Checking-in on Network Functions

    Full text link
    When programming network functions, changes within a packet tend to have consequences---side effects which must be accounted for by network programmers or administrators via arbitrary logic and an innate understanding of dependencies. Examples of this include updating checksums when a packet's contents has been modified or adjusting a payload length field of a IPv6 header if another header is added or updated within a packet. While static-typing captures interface specifications and how packet contents should behave, it does not enforce precise invariants around runtime dependencies like the examples above. Instead, during the design phase of network functions, programmers should be given an easier way to specify checks up front, all without having to account for and keep track of these consequences at each and every step during the development cycle. In keeping with this view, we present a unique approach for adding and generating both static checks and dynamic contracts for specifying and checking packet processing operations. We develop our technique within an existing framework called NetBricks and demonstrate how our approach simplifies and checks common dependent packet and header processing logic that other systems take for granted, all without adding much overhead during development.Comment: ANRW 2019 ~ https://irtf.org/anrw/2019/program.htm

    P4Testgen: An Extensible Test Oracle For P4

    Full text link
    We present P4Testgen, a test oracle for the P4-16 language that supports automatic generation of packet tests for any P4-programmable device. Given a P4 program and sufficient time, P4Testgen generates tests that cover every reachable statement in the input program. Each generated test consists of an input packet, control-plane configuration, and output packet(s), and can be executed in software or on hardware. Unlike prior work, P4Testgen is open source and extensible, making it a general resource for the community. P4Testgen not only covers the full P4-16 language specification, it also supports modeling the semantics of an entire packet-processing pipeline, including target-specific behaviors-i.e., whole-program semantics. Handling aspects of packet processing that lie outside of the official specification is critical for supporting real-world targets (e.g., switches, NICs, end host stacks). In addition, P4Testgen uses taint tracking and concolic execution to model complex externs (e.g., checksums and hash functions) that have been omitted by other tools, and ensures the generated tests are correct and deterministic. We have instantiated P4Testgen to build test oracles for the V1model, eBPF, and the Tofino (TNA and T2NA) architectures; each of these extensions only required effort commensurate with the complexity of the target. We validated the tests generated by P4Testgen by running them across the entire P4C program test suite as well as the Tofino programs supplied with Intel's P4 Studio. In just a few months using the tool, we discovered and confirmed 25 bugs in the mature, production toolchains for BMv2 and Tofino, and are conducting ongoing investigations into further faults uncovered by P4Testgen

    Decentralized trust in the inter-domain routing infrastructure

    Get PDF
    Inter-domain routing security is of critical importance to the Internet since it prevents unwanted traffic redirections. The current system is based on a Public Key Infrastructure (PKI), a centralized repository of digital certificates. However, the inherent centralization of such design creates tensions between its participants and hinders its deployment. In addition, some technical drawbacks of PKIs delay widespread adoption. In this paper we present IPchain, a blockchain to store the allocations and delegations of IP addresses. IPchain leverages blockchains' properties to decentralize trust among its participants, with the final goal of providing flexible trust models that adapt better to the ever-changing geopolitical landscape. Moreover, we argue that Proof of Stake is a suitable consensus algorithm for IPchain due to the unique incentive structure of this use-case, and that blockchains offer relevant technical advantages when compared to existing systems, such as simplified management. In order to show its feasibility and suitability, we have implemented and evaluated IPchain's performance and scalability storing around 350k IP prefixes in a 2.5 GB chain.Peer ReviewedPostprint (published version
    • …
    corecore