743 research outputs found

    Pemodelan Sistem Multiagent pada Wireless Sensor Network

    Full text link
    Wireless Sensor Network (WSN) merupakan perangkat embedded kecil yang dipasang di jaringan skala besar yang memiliki kapabilitas penginderaan, komputasi, dan komunikasi. WSN mengkombinasikan teknologi sensor modern, teknologi micro electronic, komputasi, teknologi komunikasi, dan pemrosesan terdistribusi. Implementasi sistem multiagent pada WSN cukup menjanjikan untuk meningkatkan efektifitas dan efisiensi kerja WSN. Namun, penelitian yang dilakukan terkait sistem multiagent di WSN masih parsial dengan kata lain terlalu fokus pada isu-isu tertentu. Paper ini mendeskripsikan penelitian terkait dengan penerapan sistem multiagent di WSN yang memperhatikan berbagai aspek pendukung untuk efektifitas dan efisiensi agent seperti arsitektur organisasi multiagent, itinerary planning, kapabilitas agent, middleware, dan platform hardware yang digunakan. Metodologi yang digunakan adalah INGENIAS yang berbasis pada agent-oriented software enginering

    Analisis Dan Desain Sistem Multiagent Pada Sensor Wireless

    Full text link
    Wireless Sensor atau Wireless Sensor Network (WSN) merupakan perangkat embedded kecil yang dipasang di jaringan skala besar yang memiliki kapabilitas penginderaan, komputasi, dan komunikasi. WSN mengkombinasikan teknologi sensor modern, teknologi micro electronic, komputasi, teknologi komunikasi, dan pemrosesan terdistribusi. Implementasi sistem multiagent pada WSN cukup menjanjikan untuk meningkatkan efektifitas dan efisiensi kerja WSN. Namun, penelitian yang dilakukan terkait sistem multiagent di WSN masih parsial dengan kata lain terlalu fokus pada isu-isu tertentu. Paper ini mendeskripsikan penelitian terkait dengan penerapan sistem multiagent di WSN yang memperhatikan berbagai aspek pendukung untuk efektifitas dan efisiensi agent seperti arsitektur organisasi multiagent, itinerary planning, kapabilitas agent, middleware dan platform hardware yang digunakan. Metodologi yang digunakan adalah Ingenias yang berbasis pada agent oriented software engineering.Kata Kunci: Agent, Ingenias, Itinerary, Multiagent, Wireless Sensor Network. PENDAHULUANPerkembangan teknologi sensor semakin pesat dengan kapabilitas tidak hanya pada aspek pengindraan dan signal acquisition, namun memiliki kapabilitas dalam melakukan komputasi dan komunikasi dengan perangkat lainnya. Sensor ini dinamakan sebagai Wireless Sensor Network (WSN) yang juga memanfaatkan teknologi internet sebagai media komunikasinya. WSN memiliki beberapa karakteristik seperti alokasi energy dan bandwidth terbatas, unattended ad hoc deployment, cakupan skala luas, high noise dan fault rate, lingkungan yang dinamis dan tak menentu, serta memberikan dampak pada pengembangan aplikasi yang variatif seperti structural monitoring, bio-habitat monitoring, industrial monitoring, disaster management, military surveillence, dan building security. Karakteristik ini memberikan tantangan bagi pengembangan WSN. Saat ini WSN di-deploy dengan pendekatan client-server.Menurut Min Chen, et al pendekatan ini merupakan metode tradisional penyebaran data di WSN. Kemunculan event me-trigger node-node sumber di sekitarnya untuk mengumpulkan dan mengirim data ke sink sendiri. Jumlah aliran data umumnya sama dengan jumlah node-node sumber sehingga menyebabkan konsumsi bandwidth dan energi yang cukup tinggi. Pendekatan ini menyebabkan ketidakseimbangan konsumsi energi di jaringan karena node-node yang lebih dekat dengan sink akan mengirim lebih banyak data, yaitu data miliknya maupun data yang dititipkan dari node lain. Untuk itu, diperlukan pendekatan lain yang dapat menyelesaikan permasalahan di atas, yaitu salah satunya dengan pendekatan sistem mobile agent

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    ReSpecTX: Programming Interaction Made Easy

    Get PDF
    In this paper we present the ReSpecTX language, toolchain, and standard library as a first step of a path aimed at closing the gap between coordination languages \u2013 mostly a prerogative of the academic realm until now \u2013 and their industrial counterparts. Since the limited adoption of coordination languages within the industrial realm is also due to the lack of suitable toolchains and libraries of reusable mechanisms, ReSpecTX equips a core coordination language (ReSpecT) with tools and features commonly found in mainstream programming languages. In particular, ReSpecTX makes it possible to provide a reference library of reusable and composable interaction patterns

    From distributed coordination to field calculus and aggregate computing

    Get PDF
    open6siThis work has been partially supported by: EU Horizon 2020 project HyVar (www.hyvar-project .eu), GA No. 644298; ICT COST Action IC1402 ARVI (www.cost -arvi .eu); Ateneo/CSP D16D15000360005 project RunVar (runvar-project.di.unito.it).Aggregate computing is an emerging approach to the engineering of complex coordination for distributed systems, based on viewing system interactions in terms of information propagating through collectives of devices, rather than in terms of individual devices and their interaction with their peers and environment. The foundation of this approach is the distillation of a number of prior approaches, both formal and pragmatic, proposed under the umbrella of field-based coordination, and culminating into the field calculus, a universal functional programming model for the specification and composition of collective behaviours with equivalent local and aggregate semantics. This foundation has been elaborated into a layered approach to engineering coordination of complex distributed systems, building up to pragmatic applications through intermediate layers encompassing reusable libraries of program components. Furthermore, some of these components are formally shown to satisfy formal properties like self-stabilisation, which transfer to whole application services by functional composition. In this survey, we trace the development and antecedents of field calculus, review the field calculus itself and the current state of aggregate computing theory and practice, and discuss a roadmap of current research directions with implications for the development of a broad range of distributed systems.embargoed_20210910Viroli, Mirko; Beal, Jacob; Damiani, Ferruccio; Audrito, Giorgio; Casadei, Roberto; Pianini, DaniloViroli, Mirko; Beal, Jacob; Damiani, Ferruccio; Audrito, Giorgio; Casadei, Roberto; Pianini, Danil

    A COGNITIVE ARCHITECTURE FOR AMBIENT INTELLIGENCE

    Get PDF
    L’Ambient Intelligence (AmI) è caratterizzata dall’uso di sistemi pervasivi per monitorare l’ambiente e modificarlo secondo le esigenze degli utenti e rispettando vincoli definiti globalmente. Questi sistemi non possono prescindere da requisiti come la scalabilità e la trasparenza per l’utente. Una tecnologia che consente di raggiungere questi obiettivi è rappresentata dalle reti di sensori wireless (WSN), caratterizzate da bassi costi e bassa intrusività. Tuttavia, sebbene in grado di effettuare elaborazioni a bordo dei singoli nodi, le WSN non hanno da sole le capacità di elaborazione necessarie a supportare un sistema intelligente; d’altra parte senza questa attività di pre-elaborazione la mole di dati sensoriali può facilmente sopraffare un sistema centralizzato con un’eccessiva quantità di dettagli superflui. Questo lavoro presenta un’architettura cognitiva in grado di percepire e controllare l’ambiente di cui fa parte, basata su un nuovo approccio per l’estrazione di conoscenza a partire dai dati grezzi, attraverso livelli crescenti di astrazione. Le WSN sono utilizzate come strumento sensoriale pervasivo, le cui capacità computazionali vengono utilizzate per pre-elaborare i dati rilevati, in modo da consentire ad un sistema centralizzato intelligente di effettuare ragionamenti di alto livello. L’architettura proposta è stata utilizzata per sviluppare un testbed dotato degli strumenti hardware e software necessari allo sviluppo e alla gestione di applicazioni di AmI basate su WSN, il cui obiettivo principale sia il risparmio energetico. Per fare in modo che le applicazioni di AmI siano in grado di comunicare con il mondo esterno in maniera affidabile, per richiedere servizi ad agenti esterni, l’architettura è stata arricchita con un protocollo di gestione distribuita della reputazione. È stata inoltre sviluppata un’applicazione di esempio che sfrutta le caratteristiche del testbed, con l’obiettivo di controllare la temperatura in un ambiente lavorativo. Quest’applicazione rileva la presenza dell’utente attraverso un modulo per la fusione di dati multi-sensoriali basato su reti bayesiane, e sfrutta questa informazione in un controllore fuzzy multi-obiettivo che controlla gli attuatori sulla base delle preferenze dell’utente e del risparmio energetico.Ambient Intelligence (AmI) systems are characterized by the use of pervasive equipments for monitoring and modifying the environment according to users’ needs, and to globally defined constraints. Furthermore, such systems cannot ignore requirements about ubiquity, scalability, and transparency to the user. An enabling technology capable of accomplishing these goals is represented by Wireless Sensor Networks (WSNs), characterized by low-costs and unintrusiveness. However, although provided of in-network processing capabilities, WSNs do not exhibit processing features able to support comprehensive intelligent systems; on the other hand, without this pre-processing activities the wealth of sensory data may easily overwhelm a centralized AmI system, clogging it with superfluous details. This work proposes a cognitive architecture able to perceive, decide upon, and control the environment of which the system is part, based on a new approach to knowledge extraction from raw data, that addresses this issue at different abstraction levels. WSNs are used as the pervasive sensory tool, and their computational capabilities are exploited to remotely perform preliminary data processing. A central intelligent unit subsequently extracts higher-level concepts in order to carry on symbolic reasoning. The aim of the reasoning is to plan a sequence of actions that will lead the environment to a state as close as possible to the users’ desires, taking into account both implicit and explicit feedbacks from the users, while considering global system-driven goals, such as energy saving. The proposed conceptual architecture was exploited to develop a testbed providing the hardware and software tools for the development and management of AmI applications based on WSNs, whose main goal is energy saving for global sustainability. In order to make the AmI system able to communicate with the external world in a reliable way, when some services are required to external agents, the architecture was enriched with a distributed reputation management protocol. A sample application exploiting the testbed features was implemented for addressing temperature control in a work environment. Knowledge about the user’s presence is obtained through a multi-sensor data fusion module based on Bayesian networks, and this information is exploited by a multi-objective fuzzy controller that operates on actuators taking into account users’ preference and energy consumption constraints

    Flexibility Support for Homecare Applications Based on Models and Multi-Agent Technology

    Get PDF
    In developed countries, public health systems are under pressure due to the increasing percentage of population over 65. In this context, homecare based on ambient intelligence technology seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and help optimize medical resources. Thus, current technological developments make it possible to build complex homecare applications that demand, among others, flexibility mechanisms for being able to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node failure (availability). The solution proposed in this paper copes with these flexibility requirements through the whole life-cycle of the target applications: from design phase to runtime. The proposed domain modeling approach allows medical staff to design customized applications, taking into account the adaptability needs. It also guides software developers during system implementation. The application execution is managed by a multi-agent based middleware, making it possible to meet adaptation requirements, assuring at the same time the availability of the system even for stateful applications.This work was financed in part by the University of the Basque Country (UPV/EHU) under project UFI 11/28, by the Regional Government of the Basque Country under Project IT719-13, and by the MCYT&FEDER under project DPI 2012-37806-C02-01

    A Pervasive Computational Intelligence based Cognitive Security Co-design Framework for Hype-connected Embedded Industrial IoT

    Get PDF
    The amplified connectivity of routine IoT entities can expose various security trajectories for cybercriminals to execute malevolent attacks. These dangers are even amplified by the source limitations and heterogeneity of low-budget IoT/IIoT nodes, which create existing multitude-centered and fixed perimeter-oriented security tools inappropriate for vibrant IoT settings. The offered emulation assessment exemplifies the remunerations of implementing context aware co-design oriented cognitive security method in assimilated IIoT settings and delivers exciting understandings in the strategy execution to drive forthcoming study. The innovative features of our system is in its capability to get by with irregular system connectivity as well as node limitations in terms of scares computational ability, limited buffer (at edge node), and finite energy. Based on real-time analytical data, projected scheme select the paramount probable end-to-end security system possibility that ties with an agreed set of node constraints. The paper achieves its goals by recognizing some gaps in the security explicit to node subclass that is vital to our system’s operations

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period
    • …
    corecore