210,121 research outputs found

    Software maintenance by program transformation in a wide spectrum language

    Get PDF
    This thesis addresses the software maintenance problem of extracting high-level designs from code. The investigated solution is to use a mathematically-based formal program transformation system. The resulting tool, the Maintainer's Assistant, is based on Ward's [177] WSL (wide spectrum language) and method of proving program equivalence. The problems addressed include: how to reverse engineer from code alone (the only reliable source of information about a program [158]), how to express program transformations within the system, what kinds of transformations should be incorporated, how to make the tool simple to use, how to perform abstraction and how to create a tool suitable for use with large programs. Using the Maintainer's Assistant, the program code is automatically translated into WSL and the transformations, although tested for valid applicability by the system, are interactively applied by the user. Notable features include a mathematical simplifier, a large flexible transformation catalogue and, significantly, the use of an extension of WSL, A4etaWSL, for representing the transformations. MetaWSL expands WSL by incorporating a variety of extensions, including: program editing statements, pattern matching and template filling functions, symbolic mathematics and logic functions, statements for moving within the program’s syntax tree and statements for repeating an operation at each node of the tree. Using MetaWSL, 80% of the 601 transformations can be expressed in less than 20 program statements. The Maintainer's Assistant has been used on a wide variety of examples of up to several thousand lines, including commercial software written in IBM 370 assembler. It has been possible to transform initially unstructured programs into a hierarchy of procedures, facilitating subsequent design recovery. These results show that program transformation is a viable method of renovating old (370 assembler) code in a cost elective way, and that MetaWSL provides an effective basis for clearly and concisely expressing the required transformations

    Vary: An IDE for Designing Algorithms and Measuring Quality

    Get PDF
    Pseudocode is one of the recommended methods for teaching students to design algorithms. Having a tool that performs the automatic translation of an algorithm into pseudocode to a programming language would allow the student to understand the complete process of program development. In addition, the introduction of quality measurement of algorithms designed from the first steps of learning programming would enable the student to understand the importance of code quality for maintenance of software processes. This work describes Vary, an integrated development environment based on Eclipse for writing and running pseudocode algorithms. The environment automatically transforms abstract pseudocode into runnable C/C++ source code that can be later executed. Computer programming learners and even computational scientists can use Vary to write and run algorithms, while taking advantage of modern development environment features. Vary is provided with an additional extension to automatically carry out algorithm analysis with SonarQube

    Systematic evaluation of design choices for software development tools

    Get PDF
    [Abstract]: Most design and evaluation of software tools is based on the intuition and experience of the designers. Software tool designers consider themselves typical users of the tools that they build and tend to subjectively evaluate their products rather than objectively evaluate them using established usability methods. This subjective approach is inadequate if the quality of software tools is to improve and the use of more systematic methods is advocated. This paper summarises a sequence of studies that show how user interface design choices for software development tools can be evaluated using established usability engineering techniques. The techniques used included guideline review, predictive modelling and experimental studies with users

    A document-like software visualization method for effective cognition of c-based software systems

    Get PDF
    It is clear that maintenance is a crucial and very costly process in a software life cycle. Nowadays there are a lot of software systems particularly legacy systems that are always maintained from time to time as new requirements arise. One important source to understand a software system before it is being maintained is through the documentation, particularly system documentation. Unfortunately, not all software systems developed or maintained are accompanied with their reliable and updated documents. In this case, source codes will be the only reliable source for programmers. A number of studies have been carried out in order to assist cognition based on source codes. One way is through tool automation via reverse engineering technique in which source codes will be parsed and the information extracted will be visualized using certain visualization methods. Most software visualization methods use graph as the main element to represent extracted software artifacts. Nevertheless, current methods tend to produce more complicated graphs and do not grant an explicit, document-like re-documentation environment. Hence, this thesis proposes a document-like software visualization method called DocLike Modularized Graph (DMG). The method is realized in a prototype tool named DocLike Viewer that targets on C-based software systems. The main contribution of the DMG method is to provide an explicit structural re-document mechanism in the software visualization tool. Besides, the DMG method provides more level of information abstractions via less complex graph that include inter-module dependencies, inter-program dependencies, procedural abstraction and also parameter passing. The DMG method was empirically evaluated based on the Goal/Question/Metric (GQM) paradigm and the findings depict that the method can improve productivity and quality in the aspect of cognition or program comprehension. A usability study was also conducted and DocLike Viewer had the most positive responses from the software practitioners

    Invertible Program Restructurings for Continuing Modular Maintenance

    Get PDF
    When one chooses a main axis of structural decompostion for a software, such as function- or data-oriented decompositions, the other axes become secondary, which can be harmful when one of these secondary axes becomes of main importance. This is called the tyranny of the dominant decomposition. In the context of modular extension, this problem is known as the Expression Problem and has found many solutions, but few solutions have been proposed in a larger context of modular maintenance. We solve the tyranny of the dominant decomposition in maintenance with invertible program transformations. We illustrate this on the typical Expression Problem example. We also report our experiments with Java and Haskell programs and discuss the open problems with our approach.Comment: 6 pages, Early Research Achievements Track; 16th European Conference on Software Maintenance and Reengineering (CSMR 2012), Szeged : Hungary (2012

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    Towards a Tool-based Development Methodology for Pervasive Computing Applications

    Get PDF
    Despite much progress, developing a pervasive computing application remains a challenge because of a lack of conceptual frameworks and supporting tools. This challenge involves coping with heterogeneous devices, overcoming the intricacies of distributed systems technologies, working out an architecture for the application, encoding it in a program, writing specific code to test the application, and finally deploying it. This paper presents a design language and a tool suite covering the development life-cycle of a pervasive computing application. The design language allows to define a taxonomy of area-specific building-blocks, abstracting over their heterogeneity. This language also includes a layer to define the architecture of an application, following an architectural pattern commonly used in the pervasive computing domain. Our underlying methodology assigns roles to the stakeholders, providing separation of concerns. Our tool suite includes a compiler that takes design artifacts written in our language as input and generates a programming framework that supports the subsequent development stages, namely implementation, testing, and deployment. Our methodology has been applied on a wide spectrum of areas. Based on these experiments, we assess our approach through three criteria: expressiveness, usability, and productivity
    corecore