6,500 research outputs found

    Semantic data integration for supply chain management: with a specific focus on applications in the semiconductor industry

    Get PDF
    Supply Chain Management (SCM) is essential to monitor, control, and enhance the performance of SCs. Increasing globalization and diversity of Supply Chains (SC)s lead to complex SC structures, limited visibility among SC partners, and challenging collaboration caused by dispersed data silos. Digitalization is responsible for driving and transforming SCs of fundamental sectors such as the semiconductor industry. This is further accelerated due to the inevitable role that semiconductor products play in electronics, IoT, and security systems. Semiconductor SCM is unique as the SC operations exhibit special features, e.g., long production lead times and short product life. Hence, systematic SCM is required to establish information exchange, overcome inefficiency resulting from incompatibility, and adapt to industry-specific challenges. The Semantic Web is designed for linking data and establishing information exchange. Semantic models provide high-level descriptions of the domain that enable interoperability. Semantic data integration consolidates the heterogeneous data into meaningful and valuable information. The main goal of this thesis is to investigate Semantic Web Technologies (SWT) for SCM with a specific focus on applications in the semiconductor industry. As part of SCM, End-to-End SC modeling ensures visibility of SC partners and flows. Existing models are limited in the way they represent operational SC relationships beyond one-to-one structures. The scarcity of empirical data from multiple SC partners hinders the analysis of the impact of supply network partners on each other and the benchmarking of the overall SC performance. In our work, we investigate (i) how semantic models can be used to standardize and benchmark SCs. Moreover, in a volatile and unpredictable environment, SC experts require methodical and efficient approaches to integrate various data sources for informed decision-making regarding SC behavior. Thus, this work addresses (ii) how semantic data integration can help make SCs more efficient and resilient. Moreover, to secure a good position in a competitive market, semiconductor SCs strive to implement operational strategies to control demand variation, i.e., bullwhip, while maintaining sustainable relationships with customers. We examine (iii) how we can apply semantic technologies to specifically support semiconductor SCs. In this thesis, we provide semantic models that integrate, in a standardized way, SC processes, structure, and flows, ensuring both an elaborate understanding of the holistic SCs and including granular operational details. We demonstrate that these models enable the instantiation of a synthetic SC for benchmarking. We contribute with semantic data integration applications to enable interoperability and make SCs more efficient and resilient. Moreover, we leverage ontologies and KGs to implement customer-oriented bullwhip-taming strategies. We create semantic-based approaches intertwined with Artificial Intelligence (AI) algorithms to address semiconductor industry specifics and ensure operational excellence. The results prove that relying on semantic technologies contributes to achieving rigorous and systematic SCM. We deem that better standardization, simulation, benchmarking, and analysis, as elaborated in the contributions, will help master more complex SC scenarios. SCs stakeholders can increasingly understand the domain and thus are better equipped with effective control strategies to restrain disruption accelerators, such as the bullwhip effect. In essence, the proposed Sematic Web Technology-based strategies unlock the potential to increase the efficiency, resilience, and operational excellence of supply networks and the semiconductor SC in particular

    Flat-plate solar array project. Volume 8: Project analysis and integration

    Get PDF
    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed

    Data mining in manufacturing: a review based on the kind of knowledge

    Get PDF
    In modern manufacturing environments, vast amounts of data are collected in database management systems and data warehouses from all involved areas, including product and process design, assembly, materials planning, quality control, scheduling, maintenance, fault detection etc. Data mining has emerged as an important tool for knowledge acquisition from the manufacturing databases. This paper reviews the literature dealing with knowledge discovery and data mining applications in the broad domain of manufacturing with a special emphasis on the type of functions to be performed on the data. The major data mining functions to be performed include characterization and description, association, classification, prediction, clustering and evolution analysis. The papers reviewed have therefore been categorized in these five categories. It has been shown that there is a rapid growth in the application of data mining in the context of manufacturing processes and enterprises in the last 3 years. This review reveals the progressive applications and existing gaps identified in the context of data mining in manufacturing. A novel text mining approach has also been used on the abstracts and keywords of 150 papers to identify the research gaps and find the linkages between knowledge area, knowledge type and the applied data mining tools and techniques

    Towards the integration of enterprise software: The business manufacturing intelligence

    Get PDF
    Nowadays, the Information Communication Technology has pervaded literally the companies. In the company circulates an huge amount of information but too much information doesn’t provide any added value. The overload of information exceeds individual processing capacity and slowdowns decision making operations. We must transform the enormous quantity of information in useful knowledge taking in consideration that information becomes obsolete quickly in condition of dynamic market. Companies process this information by specific software for managing, efficiently and effectively, the business processes. In this paper we analyse the myriad of acronyms of software that is used in enterprises with the changes that occurred over the time, from production to decision making until to convergence in an intelligent modular enterprise software, that we named Business Manufacturing Intelligence (BMI), that will manage and support the enterprise in the futurebusiness manufacturing intelligence, enterprise resource planning; business intelligence; management software; automation software; decision making software

    A Company-led Methodology for the Specification of Product Design Capabilities in Small and Medium Sized Electronics Companies

    Get PDF
    It is the aim of the research reported in this thesis to improve the product design effectiveness of small and medium sized electronics companies in the United Kingdom. It does so by presenting a methodology for use by such firms which will enable them to specify product design capabilities which are resilient to changes in their respective business environments. The research has not, however, concerned itself with the details of particular electronics component technologies or with the advantages of various CAD or CAE products, although these are both important aspects of any design capability. Nor is it concerned with the implementation of the product design capability. The methodology, which represents a significant improvement on current practice, is a structured, company-driven approach which draws extensively upon the lessons of international design best practice. It uses well-proven tools and techniques to guide firms through the entire process of creating such capabilities - from the development of an appropriate Mission Statement to the identification of cost effective and appropriate design system solutions which can readily be translated into action plans for improvement. The work emphasises the importance of adopting a holistic, systems approach which acknowledges the interrelationship between the management of the design process, as well as its operational and supporting activities. The research has been structured around the experiences of companies which have implemented electronics design systems and which "own" the problem in question. Hence, a research strategy was adopted which was based upon a case study approach and upon the development of close collaborative links with two leading design automation tool vendor companies. Case study interviews were undertaken in 18 U.K. and European electronics companies and in 11 U.S., Japanese and Korean electronics firms. The work proceeded in two distinct phases. Firstly, the author participated with other researchers to jointly develop a functional specification of an electronics designers' toolset to support the process of product design in an integrated manufacturing environment. The first phase provided the context for Phase 2, the development of the AGILITY methodology for specifying product design capabilities which represents the author's individual contribution. The contribution to knowledge made by the research lies in the creation of a process methodology which, for the first time, will help U.K. electronics companies to define for themselves product design capabilities which are robust and which support their wider business objectives. No such methodology is currently available in a form which is both accessible and affordable to smaller firms. Furthermore, the author has uncovered no evidence of the existence of such a methodology even for use by large electronics firms. Validation of the methodology is subject to an ongoing process of feedback.Racal Redac Lt

    Routines and representations at work - observing the architecture of conceptual design

    Get PDF
    routines, representations, artifacts, product development, workplace observation, evolutionary economics, chip manufacturing

    Qualitative Case Studies in Operations Management: Trends, Research Outcomes, And Future Research Implications

    Get PDF
    Our study examines the state of qualitative case studies in operations management. Five main operations management journals are included for their impact on the field. They are in alphabetical order: Decision Sciences, International Journal of Operations and Production Management, Journal of Operations Management, Management Science, and Production and Operations Management. The qualitative case studies chosen were published between 1992 and 2007. With an increasing trend toward using more qualitative case studies, there have been meaningful and significant contributions to the field of operations management, especially in the area of theory building. However, in many of the qualitative case studies we reviewed, sufficient details in research design, data collection, and data analysis were missing. For instance, there are studies that do not offer sampling logic or a description of the analysis through which research out-comes are drawn. Further, research protocols for doing inductive case studies are much better developed compared to the research protocols for doing deductive case studies. Consequently, there is a lack of consistency in the way the case method has been applied. As qualitative researchers, we offer suggestions on how we can improve on what we have done and elevate the level of rigor and consistency

    Intelligent shop scheduling for semiconductor manufacturing

    Get PDF
    Semiconductor market sales have expanded massively to more than 200 billion dollars annually accompanied by increased pressure on the manufacturers to provide higher quality products at lower cost to remain competitive. Scheduling of semiconductor manufacturing is one of the keys to increasing productivity, however the complexity of manufacturing high capacity semiconductor devices and the cost considerations mean that it is impossible to experiment within the facility. There is an immense need for effective decision support models, characterizing and analyzing the manufacturing process, allowing the effect of changes in the production environment to be predicted in order to increase utilization and enhance system performance. Although many simulation models have been developed within semiconductor manufacturing very little research on the simulation of the photolithography process has been reported even though semiconductor manufacturers have recognized that the scheduling of photolithography is one of the most important and challenging tasks due to complex nature of the process. Traditional scheduling techniques and existing approaches show some benefits for solving small and medium sized, straightforward scheduling problems. However, they have had limited success in solving complex scheduling problems with stochastic elements in an economic timeframe. This thesis presents a new methodology combining advanced solution approaches such as simulation, artificial intelligence, system modeling and Taguchi methods, to schedule a photolithography toolset. A new structured approach was developed to effectively support building the simulation models. A single tool and complete toolset model were developed using this approach and shown to have less than 4% deviation from actual production values. The use of an intelligent scheduling agent for the toolset model shows an average of 15% improvement in simulated throughput time and is currently in use for scheduling the photolithography toolset in a manufacturing plant
    • 

    corecore