518 research outputs found

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators

    In-memory computing with emerging memory devices: Status and outlook

    Get PDF
    Supporting data for "In-memory computing with emerging memory devices: status and outlook", submitted to APL Machine Learning

    A survey of near-data processing architectures for neural networks

    Get PDF
    Data-intensive workloads and applications, such as machine learning (ML), are fundamentally limited by traditional computing systems based on the von-Neumann architecture. As data movement operations and energy consumption become key bottlenecks in the design of computing systems, the interest in unconventional approaches such as Near-Data Processing (NDP), machine learning, and especially neural network (NN)-based accelerators has grown significantly. Emerging memory technologies, such as ReRAM and 3D-stacked, are promising for efficiently architecting NDP-based accelerators for NN due to their capabilities to work as both high-density/low-energy storage and in/near-memory computation/search engine. In this paper, we present a survey of techniques for designing NDP architectures for NN. By classifying the techniques based on the memory technology employed, we underscore their similarities and differences. Finally, we discuss open challenges and future perspectives that need to be explored in order to improve and extend the adoption of NDP architectures for future computing platforms. This paper will be valuable for computer architects, chip designers, and researchers in the area of machine learning.This work has been supported by the CoCoUnit ERC Advanced Grant of the EU’s Horizon 2020 program (grant No 833057), the Spanish State Research Agency (MCIN/AEI) under grant PID2020-113172RB-I00, and the ICREA Academia program.Peer ReviewedPostprint (published version
    • …
    corecore