49,293 research outputs found

    A Processor Extension for Cycle-Accurate Real-Time Software

    Get PDF
    Certain hard real-time tasks demand precise timing of events, but the usual software solution of periodic interrupts driving a scheduler only provides precision in the millisecond range. NOP-insertion can provide higher precision, but is tedious to do manually, requires predictable instruction timing, and works best with simple algorithms. To achieve high-precision timing in software, we propose instruction-level access to cycle-accurate timers. We add an instruction that waits for a timer to expire then reloads it synchronously. Among other things, this provides a way to exactly specify the period of a loop. To validate our approach, we implemented a simple RISC processor with our extension on an FPGA and programmed it to behave like a video controller and an asynchronous serial receiver. Both applications were much easier to write and debug than their hardware counterparts, which took roughly four times as many lines in VHDL. Simple processors with our extension brings software-style development to a class of applications that were once only possible with hardware

    Timing instructions for RISC-V based hard real time edge devices

    Get PDF
    For real-time systems, the temporal behavior of software is as important as its logical behavior. Ensuring correct temporal behavior at runtime becomes challenging as the complexity of the system increases. A main reason for this is the measurement and control of timing spans all abstraction layers in computing, including programming languages, memory hierarchy, pipelining techniques, bus architectures, memory management and task scheduling. The majority of software solutions to temporal requirements rely on programmable timers/interrupts which adds additional overhead to the system. RISC-V provides an open and extendable ISA (Instruction Set Architecture) enabling a new era of innovation in processor customization and performance and power optimization. This work presents a new RISC-V ISA extension to obtain high-precision cycle-accurate temporal behavior of real-time systems with low overhead. The work proposes a programming model supported by a new custom instruction that measures and controls the execution time of real-time software. The proposed custom instruction-based timing extension is evaluated against a pure software solution with a traditional timer/interrupt solution with respect to the resulting instruction density vs. hardware area overhead

    Cycle Accurate Energy and Throughput Estimation for Data Cache

    Get PDF
    Resource optimization in energy constrained real-time adaptive embedded systems highly depends on accurate energy and throughput estimates of processor peripherals. Such applications require lightweight, accurate mathematical models to profile energy and timing requirements on the go. This paper presents enhanced mathematical models for data cache energy and throughput estimation. The energy and throughput models were found to be within 95% accuracy of per instruction energy model of a processor, and a full system simulator?s timing model respectively. Furthermore, the possible application of these models in various scenarios is discussed in this paper

    Optimization of Discrete-parameter Multiprocessor Systems using a Novel Ergodic Interpolation Technique

    Full text link
    Modern multi-core systems have a large number of design parameters, most of which are discrete-valued, and this number is likely to keep increasing as chip complexity rises. Further, the accurate evaluation of a potential design choice is computationally expensive because it requires detailed cycle-accurate system simulation. If the discrete parameter space can be embedded into a larger continuous parameter space, then continuous space techniques can, in principle, be applied to the system optimization problem. Such continuous space techniques often scale well with the number of parameters. We propose a novel technique for embedding the discrete parameter space into an extended continuous space so that continuous space techniques can be applied to the embedded problem using cycle accurate simulation for evaluating the objective function. This embedding is implemented using simulation-based ergodic interpolation, which, unlike spatial interpolation, produces the interpolated value within a single simulation run irrespective of the number of parameters. We have implemented this interpolation scheme in a cycle-based system simulator. In a characterization study, we observe that the interpolated performance curves are continuous, piece-wise smooth, and have low statistical error. We use the ergodic interpolation-based approach to solve a large multi-core design optimization problem with 31 design parameters. Our results indicate that continuous space optimization using ergodic interpolation-based embedding can be a viable approach for large multi-core design optimization problems.Comment: A short version of this paper will be published in the proceedings of IEEE MASCOTS 2015 conferenc

    An approach to real-time simulation using parallel processing

    Get PDF
    A preliminary simulator design that uses a parallel computer organization to provide accuracy, portability, and low cost is presented. The hardware and software for this prototype simulator are discussed. A detailed discussion of the inter-computer data transfer mechanism is also presented

    Generic Pipelined Processor Modeling and High Performance Cycle-Accurate Simulator Generation

    Full text link
    Detailed modeling of processors and high performance cycle-accurate simulators are essential for today's hardware and software design. These problems are challenging enough by themselves and have seen many previous research efforts. Addressing both simultaneously is even more challenging, with many existing approaches focusing on one over another. In this paper, we propose the Reduced Colored Petri Net (RCPN) model that has two advantages: first, it offers a very simple and intuitive way of modeling pipelined processors; second, it can generate high performance cycle-accurate simulators. RCPN benefits from all the useful features of Colored Petri Nets without suffering from their exponential growth in complexity. RCPN processor models are very intuitive since they are a mirror image of the processor pipeline block diagram. Furthermore, in our experiments on the generated cycle-accurate simulators for XScale and StrongArm processor models, we achieved an order of magnitude (~15 times) speedup over the popular SimpleScalar ARM simulator.Comment: Submitted on behalf of EDAA (http://www.edaa.com/
    corecore