4,111 research outputs found

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Towards the understanding of the cocoa transcriptome: Production and analysis of an exhaustive dataset of ESTs of Theobroma cacao L. generated from various tissues and under various conditions

    Get PDF
    Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species. Gene Ontology (GO) annotation was applied to distribute the ESTs among the main GO categories. A specific information system (ESTtik) was constructed to process, store and manage this EST collection allowing the user to query a database. To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection. A large collection of new genetic markers was provided by this ESTs collection. This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow the construction of a high density gene map of T. cacao. This EST collection represents a unique and important molecular resource for T. cacao study and improvement, facilitating the discovery of candidate genes for important T. cacao trait variation. (Résumé d'auteur

    Comprehensive analysis of normal adjacent to tumor transcriptomes.

    Get PDF
    Histologically normal tissue adjacent to the tumor (NAT) is commonly used as a control in cancer studies. However, little is known about the transcriptomic profile of NAT, how it is influenced by the tumor, and how the profile compares with non-tumor-bearing tissues. Here, we integrate data from the Genotype-Tissue Expression project and The Cancer Genome Atlas to comprehensively analyze the transcriptomes of healthy, NAT, and tumor tissues in 6506 samples across eight tissues and corresponding tumor types. Our analysis shows that NAT presents a unique intermediate state between healthy and tumor. Differential gene expression and protein-protein interaction analyses reveal altered pathways shared among NATs across tissue types. We characterize a set of 18 genes that are specifically activated in NATs. By applying pathway and tissue composition analyses, we suggest a pan-cancer mechanism of pro-inflammatory signals from the tumor stimulates an inflammatory response in the adjacent endothelium

    Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Three-dimensional <it>in vitro </it>culture of cancer cells are used to predict the effects of prospective anti-cancer drugs <it>in vivo</it>. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images.</p> <p>Methods</p> <p>Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using <it>k</it>-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system.</p> <p>Results</p> <p>Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images.</p> <p>Conclusion</p> <p>Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development.</p

    A Colour Wheel to Rule them All: Analysing Colour & Geometry in Medical Microscopy

    Get PDF
    Personalized medicine is a rapidly growing field in healthcare that aims to customize medical treatments and preventive measures based on each patient’s unique characteristics, such as their genes, environment, and lifestyle factors. This approach acknowledges that people with the same medical condition may respond differently to therapies and seeks to optimize patient outcomes while minimizing the risk of adverse effects. To achieve these goals, personalized medicine relies on advanced technologies, such as genomics, proteomics, metabolomics, and medical imaging. Digital histopathology, a crucial aspect of medical imaging, provides clinicians with valuable insights into tissue structure and function at the cellular and molecular levels. By analyzing small tissue samples obtained through minimally invasive techniques, such as biopsy or aspirate, doctors can gather extensive data to evaluate potential diagnoses and clinical decisions. However, digital analysis of histology images presents unique challenges, including the loss of 3D information and stain variability, which is further complicated by sample variability. Limited access to data exacerbates these challenges, making it difficult to develop accurate computational models for research and clinical use in digital histology. Deep learning (DL) algorithms have shown significant potential for improving the accuracy of Computer-Aided Diagnosis (CAD) and personalized treatment models, particularly in medical microscopy. However, factors such as limited generability, lack of interpretability, and bias sometimes hinder their clinical impact. Furthermore, the inherent variability of histology images complicates the development of robust DL methods. Thus, this thesis focuses on developing new tools to address these issues. Our essential objective is to create transparent, accessible, and efficient methods based on classical principles from various disciplines, including histology, medical imaging, mathematics, and art, to tackle microscopy image registration and colour analysis successfully. These methods can contribute significantly to the advancement of personalized medicine, particularly in studying the tumour microenvironment for diagnosis and therapy research. First, we introduce a novel automatic method for colour analysis and non-rigid histology registration, enabling the study of heterogeneity morphology in tumour biopsies. This method achieves accurate tissue cut registration, drastically reducing landmark distance and excellent border overlap. Second, we introduce ABANICCO, a novel colour analysis method that combines geometric analysis, colour theory, fuzzy colour spaces, and multi-label systems for automatically classifying pixels into a set of conventional colour categories. ABANICCO outperforms benchmark methods in accuracy and simplicity. It is computationally straightforward, making it useful in scenarios involving changing objects, limited data, unclear boundaries, or when users lack prior knowledge of the image or colour theory. Moreover, results can be modified to match each particular task. Third, we apply the acquired knowledge to create a novel pipeline of rigid histology registration and ABANICCO colour analysis for the in-depth study of triple-negative breast cancer biopsies. The resulting heterogeneity map and tumour score provide valuable insights into the composition and behaviour of the tumour, informing clinical decision-making and guiding treatment strategies. Finally, we consolidate the developed ideas into an efficient pipeline for tissue reconstruction and multi-modality data integration on Tuberculosis infection data. This enables accurate element distribution analysis to understand better interactions between bacteria, host cells, and the immune system during the course of infection. The methods proposed in this thesis represent a transparent approach to computational pathology, addressing the needs of medical microscopy registration and colour analysis while bridging the gap between clinical practice and computational research. Moreover, our contributions can help develop and train better, more robust DL methods.En una época en la que la medicina personalizada está revolucionando la asistencia sanitaria, cada vez es más importante adaptar los tratamientos y las medidas preventivas a la composición genética, el entorno y el estilo de vida de cada paciente. Mediante el empleo de tecnologías avanzadas, como la genómica, la proteómica, la metabolómica y la imagen médica, la medicina personalizada se esfuerza por racionalizar el tratamiento para mejorar los resultados y reducir los efectos secundarios. La microscopía médica, un aspecto crucial de la medicina personalizada, permite a los médicos recopilar y analizar grandes cantidades de datos a partir de pequeñas muestras de tejido. Esto es especialmente relevante en oncología, donde las terapias contra el cáncer se pueden optimizar en función de la apariencia tisular específica de cada tumor. La patología computacional, un subcampo de la visión por ordenador, trata de crear algoritmos para el análisis digital de biopsias. Sin embargo, antes de que un ordenador pueda analizar imágenes de microscopía médica, hay que seguir varios pasos para conseguir las imágenes de las muestras. La primera etapa consiste en recoger y preparar una muestra de tejido del paciente. Para que esta pueda observarse fácilmente al microscopio, se corta en secciones ultrafinas. Sin embargo, este delicado procedimiento no está exento de dificultades. Los frágiles tejidos pueden distorsionarse, desgarrarse o agujerearse, poniendo en peligro la integridad general de la muestra. Una vez que el tejido está debidamente preparado, suele tratarse con tintes de colores característicos. Estos tintes acentúan diferentes tipos de células y tejidos con colores específicos, lo que facilita a los profesionales médicos la identificación de características particulares. Sin embargo, esta mejora en visualización tiene un alto coste. En ocasiones, los tintes pueden dificultar el análisis informático de las imágenes al mezclarse de forma inadecuada, traspasarse al fondo o alterar el contraste entre los distintos elementos. El último paso del proceso consiste en digitalizar la muestra. Se toman imágenes de alta resolución del tejido con distintos aumentos, lo que permite su análisis por ordenador. Esta etapa también tiene sus obstáculos. Factores como una calibración incorrecta de la cámara o unas condiciones de iluminación inadecuadas pueden distorsionar o hacer borrosas las imágenes. Además, las imágenes de porta completo obtenidas so de tamaño considerable, complicando aún más el análisis. En general, si bien la preparación, la tinción y la digitalización de las muestras de microscopía médica son fundamentales para el análisis digital, cada uno de estos pasos puede introducir retos adicionales que deben abordarse para garantizar un análisis preciso. Además, convertir un volumen de tejido completo en unas pocas secciones teñidas reduce drásticamente la información 3D disponible e introduce una gran incertidumbre. Las soluciones de aprendizaje profundo (deep learning, DL) son muy prometedoras en el ámbito de la medicina personalizada, pero su impacto clínico a veces se ve obstaculizado por factores como la limitada generalizabilidad, el sobreajuste, la opacidad y la falta de interpretabilidad, además de las preocupaciones éticas y en algunos casos, los incentivos privados. Por otro lado, la variabilidad de las imágenes histológicas complica el desarrollo de métodos robustos de DL. Para superar estos retos, esta tesis presenta una serie de métodos altamente robustos e interpretables basados en principios clásicos de histología, imagen médica, matemáticas y arte, para alinear secciones de microscopía y analizar sus colores. Nuestra primera contribución es ABANICCO, un innovador método de análisis de color que ofrece una segmentación de colores objectiva y no supervisada y permite su posterior refinamiento mediante herramientas fáciles de usar. Se ha demostrado que la precisión y la eficacia de ABANICCO son superiores a las de los métodos existentes de clasificación y segmentación del color, e incluso destaca en la detección y segmentación de objetos completos. ABANICCO puede aplicarse a imágenes de microscopía para detectar áreas teñidas para la cuantificación de biopsias, un aspecto crucial de la investigación de cáncer. La segunda contribución es un método automático y no supervisado de segmentación de tejidos que identifica y elimina el fondo y los artefactos de las imágenes de microscopía, mejorando así el rendimiento de técnicas más sofisticadas de análisis de imagen. Este método es robusto frente a diversas imágenes, tinciones y protocolos de adquisición, y no requiere entrenamiento. La tercera contribución consiste en el desarrollo de métodos novedosos para registrar imágenes histopatológicas de forma eficaz, logrando el equilibrio adecuado entre un registro preciso y la preservación de la morfología local, en función de la aplicación prevista. Como cuarta contribución, los tres métodos mencionados se combinan para crear procedimientos eficientes para la integración completa de datos volumétricos, creando visualizaciones altamente interpretables de toda la información presente en secciones consecutivas de biopsia de tejidos. Esta integración de datos puede tener una gran repercusión en el diagnóstico y el tratamiento de diversas enfermedades, en particular el cáncer de mama, al permitir la detección precoz, la realización de pruebas clínicas precisas, la selección eficaz de tratamientos y la mejora en la comunicación el compromiso con los pacientes. Por último, aplicamos nuestros hallazgos a la integración multimodal de datos y la reconstrucción de tejidos para el análisis preciso de la distribución de elementos químicos en tuberculosis, lo que arroja luz sobre las complejas interacciones entre las bacterias, las células huésped y el sistema inmunitario durante la infección tuberculosa. Este método también aborda problemas como el daño por adquisición, típico de muchas modalidades de imagen. En resumen, esta tesis muestra la aplicación de métodos clásicos de visión por ordenador en el registro de microscopía médica y el análisis de color para abordar los retos únicos de este campo, haciendo hincapié en la visualización eficaz y fácil de datos complejos. Aspiramos a seguir perfeccionando nuestro trabajo con una amplia validación técnica y un mejor análisis de los datos. Los métodos presentados en esta tesis se caracterizan por su claridad, accesibilidad, visualización eficaz de los datos, objetividad y transparencia. Estas características los hacen perfectos para tender puentes robustos entre los investigadores de inteligencia artificial y los clínicos e impulsar así la patología computacional en la práctica y la investigación médicas.Programa de Doctorado en Ciencia y Tecnología Biomédica por la Universidad Carlos III de MadridPresidenta: María Jesús Ledesma Carbayo.- Secretario: Gonzalo Ricardo Ríos Muñoz.- Vocal: Estíbaliz Gómez de Marisca
    corecore