49 research outputs found

    A process algebra for wireless mesh networks used for modelling, verifying and analysing AODV

    Get PDF
    We propose AWN (Algebra for Wireless Networks), a process algebra tailored to the modelling of Mobile Ad hoc Network (MANET) and Wireless Mesh Network (WMN) protocols. It combines novel treatments of local broadcast, conditional unicast and data structures. In this framework we present a rigorous analysis of the Ad hoc On-Demand Distance Vector (AODV) protocol, a popular routing protocol designed for MANETs and WMNs, and one of the four protocols currently standardised by the IETF MANET working group. We give a complete and unambiguous specification of this protocol, thereby formalising the RFC of AODV, the de facto standard specification, given in English prose. In doing so, we had to make non-evident assumptions to resolve ambiguities occurring in that specification. Our formalisation models the exact details of the core functionality of AODV, such as route maintenance and error handling, and only omits timing aspects. The process algebra allows us to formalise and (dis)prove crucial properties of mesh network routing protocols such as loop freedom and packet delivery. We are the first to provide a detailed proof of loop freedom of AODV. In contrast to evaluations using simulation or model checking, our proof is generic and holds for any possible network scenario in terms of network topology, node mobility, etc. Due to ambiguities and contradictions the RFC specification allows several interpretations; we show for more than 5000 of them whether they are loop free or not, thereby demonstrating how the reasoning and proofs can relatively easily be adapted to protocol variants. Using our formal and unambiguous specification, we find shortcomings of AODV that affect performance, e.g. the establishment of non-optimal routes, and some routes not being found at all. We formalise improvements in the same process algebra; carrying over the proofs is again easy

    A mechanized proof of loop freedom of the (untimed) AODV routing protocol

    Full text link
    The Ad hoc On-demand Distance Vector (AODV) routing protocol allows the nodes in a Mobile Ad hoc Network (MANET) or a Wireless Mesh Network (WMN) to know where to forward data packets. Such a protocol is 'loop free' if it never leads to routing decisions that forward packets in circles. This paper describes the mechanization of an existing pen-and-paper proof of loop freedom of AODV in the interactive theorem prover Isabelle/HOL. The mechanization relies on a novel compositional approach for lifting invariants to networks of nodes. We exploit the mechanization to analyse several improvements of AODV and show that Isabelle/HOL can re-establish most proof obligations automatically and identify exactly the steps that are no longer valid.Comment: The Isabelle/HOL source files, and a full proof document, are available in the Archive of Formal Proofs, at http://afp.sourceforge.net/entries/AODV.shtm

    Mechanizing a Process Algebra for Network Protocols

    Get PDF
    This paper presents the mechanization of a process algebra for Mobile Ad hoc Networks and Wireless Mesh Networks, and the development of a compositional framework for proving invariant properties. Mechanizing the core process algebra in Isabelle/HOL is relatively standard, but its layered structure necessitates special treatment. The control states of reactive processes, such as nodes in a network, are modelled by terms of the process algebra. We propose a technique based on these terms to streamline proofs of inductive invariance. This is not sufficient, however, to state and prove invariants that relate states across multiple processes (entire networks). To this end, we propose a novel compositional technique for lifting global invariants stated at the level of individual nodes to networks of nodes.Comment: This paper is an extended version of arXiv:1407.3519. The Isabelle/HOL source files, and a full proof document, are available in the Archive of Formal Proofs, at http://afp.sourceforge.net/entries/AWN.shtm

    Formalising the Optimised Link State Routing Protocol

    Get PDF

    Formalising the Optimised Link State Routing Protocol

    Get PDF
    Routing protocol specifications are traditionally written in plain English. Often this yields ambiguities, inaccuracies or even contradictions. Formal methods techniques, such as process algebras, avoid these problems, thus leading to more precise and verifiable descriptions of protocols. In this paper we use the timed process algebra T-AWN for modelling the Optimised Link State Routing protocol (OLSR) version 2.Comment: In Proceedings MARS 2020, arXiv:2004.1240
    corecore