31,625 research outputs found

    Risk-limiting Load Restoration for Resilience Enhancement with Intermittent Energy Resources

    Full text link
    Microgrids are resources that can be used to restore critical loads after a natural disaster, enhancing resilience of a distribution network. To deal with the stochastic nature of intermittent energy resources, such as wind turbines (WTs) and photovoltaics (PVs), many methods rely on forecast information. However, some microgrids may not be equipped with power forecasting tools. To fill this gap, a risk-limiting strategy based on measurements is proposed. Gaussian mixture model (GMM) is used to represent a prior joint probability density function (PDF) of power outputs of WTs and PVs over multiple periods. As time rolls forward, the distribution of WT/PV generation is updated based the latest measurement data in a recursive manner. The updated distribution is used as an input for the risk-limiting load restoration problem, enabling an equivalent transformation of the original chance constrained problem into a mixed integer linear programming (MILP). Simulation cases on a distribution system with three microgrids demonstrate the effectiveness of the proposed method. Results also indicate that networked microgrids have better uncertainty management capabilities than stand-alone microgrids

    Chance-Constrained Outage Scheduling using a Machine Learning Proxy

    Full text link
    Outage scheduling aims at defining, over a horizon of several months to years, when different components needing maintenance should be taken out of operation. Its objective is to minimize operation-cost expectation while satisfying reliability-related constraints. We propose a distributed scenario-based chance-constrained optimization formulation for this problem. To tackle tractability issues arising in large networks, we use machine learning to build a proxy for predicting outcomes of power system operation processes in this context. On the IEEE-RTS79 and IEEE-RTS96 networks, our solution obtains cheaper and more reliable plans than other candidates

    Data-driven Decision Making with Probabilistic Guarantees (Part 2): Applications of Chance-constrained Optimization in Power Systems

    Full text link
    Uncertainties from deepening penetration of renewable energy resources have posed critical challenges to the secure and reliable operations of future electric grids. Among various approaches for decision making in uncertain environments, this paper focuses on chance-constrained optimization, which provides explicit probabilistic guarantees on the feasibility of optimal solutions. Although quite a few methods have been proposed to solve chance-constrained optimization problems, there is a lack of comprehensive review and comparative analysis of the proposed methods. Part I of this two-part paper reviews three categories of existing methods to chance-constrained optimization: (1) scenario approach; (2) sample average approximation; and (3) robust optimization based methods. Data-driven methods, which are not constrained by any particular distributions of the underlying uncertainties, are of particular interest. Part II of this two-part paper provides a literature review on the applications of chance-constrained optimization in power systems. Part II also provides a critical comparison of existing methods based on numerical simulations, which are conducted on standard power system test cases.Comment: (under review) to be update

    Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: a bi-level programming approach via real-time pricing

    Full text link
    In order to coordinate the scheduling problem between an isolated microgrid (IMG) and electric vehicle battery swapping stations (BSSs) in multi-stakeholder scenarios, a new bi-level optimal scheduling model is proposed for promoting the participation of BSSs in regulating the IMG economic operation. In this model, the upper-level sub-problem is formulated to minimize the IMG net costs, while the lower-level aims to maximize the profits of the BSS under real-time pricing environments determined by demand responses in the upper-level decision. To solve the model, a hybrid algorithm, called JAYA-BBA, is put forward by combining a real/integer-coded JAYA algorithm and the branch and bound algorithm (BBA), in which the JAYA and BBA are respectively employed to address the upper- and lower- level sub-problems, and the bi-level model is eventually solved through alternate iterations between the two levels. The simulation results on a microgrid test system verify the effectiveness and superiority of the presented approach.Comment: Accepted by Applied Energ

    A Robust Approach to Chance Constrained Optimal Power Flow with Renewable Generation

    Full text link
    Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a Robust Chance Constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved using a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. Deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance

    Reliable Dispatch of Renewable Generation via Charging of Dynamic PEV Populations

    Full text link
    The inherent storage of plug-in electric vehicles is likely to foster the integration of intermittent generation from renewable energy sources into existing power systems. In the present paper, we propose a three-stage scheme to the end of achieving dispatchability of a system composed of plug-in electric vehicles and intermittent generation. The main difficulties in dispatching such a system are the uncertainties inherent to intermittent generation and the time-varying aggregation of vehicles. We propose to address the former by means of probabilistic forecasts and we approach the latter with separate stage-specific models. Specifically, we first compute a dispatch schedule, using probabilistic forecasts together with an aggregated dynamic model of the system. The power output of the single devices are set subsequently, using deterministic forecasts and device-specific models. We draw upon a simulation study based on real data of generation and vehicle traffic to validate our findings.Comment: Submitted to the IEEE Transactions on Power System

    Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms

    Full text link
    Higher levels of renewable electricity generation increase uncertainty in power system operation. To ensure secure system operation, new tools that account for this uncertainty are required. In this paper, we formulate a chance-constrained AC optimal power flow problem, which guarantees that generation, power flows and voltages remain within their bounds with a pre-defined probability. We then propose an accurate, yet tractable analytical reformulation of the chance constraints. The reformulation maintains the full, non-linear AC power flow equations for the forecasted operating point, and models the impact of uncertainty through a linearization around this point. We discuss different solution algorithms, including one-shot optimization with and without recourse, and an iterative algorithm which enables scalable implementations. We further discuss how more general chance constraint reformulations can be incorporated within the iterative solution algorithm. In a case study based on four different IEEE systems, we compare the performance of the solution algorithms, and demonstrate scalability of the iterative scheme. We further show that the analytical reformulation accurately and efficiently enforces chance constraints in both in- and out-of-sample tests, and that the analytical approach outperforms two alternative, sample based chance constraint reformulations

    Chance-Constrained AC Optimal Power Flow Integrating HVDC Lines and Controllability

    Full text link
    The integration of large-scale renewable generation has major implications on the operation of power systems, two of which we address in this work. First, system operators have to deal with higher degrees of uncertainty due to forecast errors and variability in renewable energy production. Second, with abundant potential of renewable generation in remote locations, there is an increasing interest in the use of High Voltage Direct Current lines (HVDC) to increase transmission capacity. These HVDC transmission lines and the flexibility and controllability they offer must be incorporated effectively and safely into the system. In this work, we introduce an optimization tool that addresses both challenges by incorporating the full AC power flow equations, chance constraints to address the uncertainty of renewable infeed, modelling of point-to-point HVDC lines, and optimized corrective control policies to model the generator and HVDC response to uncertainty. The main contributions are twofold. First, we introduce a HVDC line model and the corresponding HVDC participation factors in a chance-constrained AC-OPF framework. Second, we modify an existing algorithm for solving the chance-constrained AC-OPF to allow for optimization of the generation and HVDC participation factors. Using realistic wind forecast data, for 10 and IEEE 39 bus systems with HVDC lines and wind farms, we show that our proposed OPF formulation achieves good in- and out-of-sample performance whereas not considering uncertainty leads to high constraint violation probabilities. In addition, we find that optimizing the participation factors reduces the cost of uncertainty significantly

    A Novel Probabilistic Framework to Study the Impact of PV-battery Systems on Low-Voltage Distribution Networks

    Full text link
    Battery storage, particularly residential battery storage coupled with rooftop PV, is emerging as an essential component of the smart grid technology mix. However, including battery storage and other flexible resources like electric vehicles and loads with thermal inertia into a probabilistic analysis based on Monte Carlo (MC) simulation is challenging, because their operational profiles are determined by computationally intensive optimization. Additionally, MC analysis requires a large pool of statistically-representative demand profiles to sample from. As a result, the analysis of the network impact of PV-battery systems has attracted little attention in the existing literature. To fill these knowledge gaps, this paper proposes a novel probabilistic framework to study the impact of PV-battery systems on low-voltage distribution networks. Specifically, the framework incorporates home energy management(HEM) operational decisions within the MC time series power flow analysis. First, using available smart meter data, we use a Bayesian nonparametric model to generate statistically-representative synthetic demand and PV profiles. Second, a policy function approximation that emulates battery scheduling decisions is used to make the simulation of optimization-based HEM feasible within the MC framework. The efficacy of our method is demonstrated on three representative low-voltage feeders, where the computation time to execute our MC framework is 5% of that when using explicit optimization methods in each MC sample. The assessment results show that uncoordinated battery scheduling has a limited beneficial impact, which is against the conjecture that batteries will serendipitously mitigate the technical problems induced by PV generation.Comment: 10 pages, 7 figure

    Whither probabilistic security management for real-time operation of power systems ?

    Full text link
    This paper investigates the stakes of introducing probabilistic approaches for the management of power system's security. In real-time operation, the aim is to arbitrate in a rational way between preventive and corrective control, while taking into account i) the prior probabilities of contingencies, ii) the possible failure modes of corrective control actions, iii) the socio-economic consequences of service interruptions. This work is a first step towards the construction of a globally coherent decision making framework for security management from long-term system expansion, via mid-term asset management, towards short-term operation planning and real-time operation.Comment: Presented at the 2013 IREP Symposium-Bulk Power Systems Dynamics and Control-IX (IREP), August 25-30,2013, Rethymnon, Crete, Greec
    corecore