15,851 research outputs found

    Probabilistic Monte-Carlo method for modelling and prediction of electronics component life

    Get PDF
    Power electronics are widely used in electric vehicles, railway locomotive and new generation aircrafts. Reliability of these components directly affect the reliability and performance of these vehicular platforms. In recent years, several research work about reliability, failure mode and aging analysis have been extensively carried out. There is a need for an efficient algorithm able to predict the life of power electronics component. In this paper, a probabilistic Monte-Carlo framework is developed and applied to predict remaining useful life of a component. Probability distributions are used to model the component’s degradation process. The modelling parameters are learned using Maximum Likelihood Estimation. The prognostic is carried out by the mean of simulation in this paper. Monte-Carlo simulation is used to propagate multiple possible degradation paths based on the current health state of the component. The remaining useful life and confident bounds are calculated by estimating mean, median and percentile descriptive statistics of the simulated degradation paths. Results from different probabilistic models are compared and their prognostic performances are evaluated

    Gaussian Process Regression for In-situ Capacity Estimation of Lithium-ion Batteries

    Full text link
    Accurate on-board capacity estimation is of critical importance in lithium-ion battery applications. Battery charging/discharging often occurs under a constant current load, and hence voltage vs. time measurements under this condition may be accessible in practice. This paper presents a data-driven diagnostic technique, Gaussian Process regression for In-situ Capacity Estimation (GP-ICE), which estimates battery capacity using voltage measurements over short periods of galvanostatic operation. Unlike previous works, GP-ICE does not rely on interpreting the voltage-time data as Incremental Capacity (IC) or Differential Voltage (DV) curves. This overcomes the need to differentiate the voltage-time data (a process which amplifies measurement noise), and the requirement that the range of voltage measurements encompasses the peaks in the IC/DV curves. GP-ICE is applied to two datasets, consisting of 8 and 20 cells respectively. In each case, within certain voltage ranges, as little as 10 seconds of galvanostatic operation enables capacity estimates with approximately 2-3% RMSE.Comment: 12 pages, 10 figures, submitted to IEEE Transactions on Industrial Informatic

    Expressing Bayesian Fusion as a Product of Distributions: Application in Robotics

    Get PDF
    More and more fields of applied computer science involve fusion of multiple data sources, such as sensor readings or model decision. However incompleteness of the models prevent the programmer from having an absolute precision over their variables. Therefore bayesian framework can be adequate for such a process as it allows handling of uncertainty.We will be interested in the ability to express any fusion process as a product, for it can lead to reduction of complexity in time and space. We study in this paper various fusion schemes and propose to add a consistency variable to justify the use of a product to compute distribution over the fused variable. We will then show application of this new fusion process to localization of a mobile robot and obstacle avoidance

    The xSAP Safety Analysis Platform

    Full text link
    This paper describes the xSAP safety analysis platform. xSAP provides several model-based safety analysis features for finite- and infinite-state synchronous transition systems. In particular, it supports library-based definition of fault modes, an automatic model extension facility, generation of safety analysis artifacts such as Dynamic Fault Trees (DFTs) and Failure Mode and Effects Analysis (FMEA) tables. Moreover, it supports probabilistic evaluation of Fault Trees, failure propagation analysis using Timed Failure Propagation Graphs (TFPGs), and Common Cause Analysis (CCA). xSAP has been used in several industrial projects as verification back-end, and is currently being evaluated in a joint R&D Project involving FBK and The Boeing Company

    Use of COTS functional analysis software as an IVHM design tool for detection and isolation of UAV fuel system faults

    Get PDF
    This paper presents a new approach to the development of health management solutions which can be applied to both new and legacy platforms during the conceptual design phase. The approach involves the qualitative functional modelling of a system in order to perform an Integrated Vehicle Health Management (IVHM) design – the placement of sensors and the diagnostic rules to be used in interrogating their output. The qualitative functional analysis was chosen as a route for early assessment of failures in complex systems. Functional models of system components are required for capturing the available system knowledge used during various stages of system and IVHM design. MADe™ (Maintenance Aware Design environment), a COTS software tool developed by PHM Technology, was used for the health management design. A model has been built incorporating the failure diagrams of five failure modes for five different components of a UAV fuel system. Thus an inherent health management solution for the system and the optimised sensor set solution have been defined. The automatically generated sensor set solution also contains a diagnostic rule set, which was validated on the fuel rig for different operation modes taking into account the predicted fault detection/isolation and ambiguity group coefficients. It was concluded that when using functional modelling, the IVHM design and the actual system design cannot be done in isolation. The functional approach requires permanent input from the system designer and reliability engineers in order to construct a functional model that will qualitatively represent the real system. In other words, the physical insight should not be isolated from the failure phenomena and the diagnostic analysis tools should be able to adequately capture the experience bases. This approach has been verified on a laboratory bench top test rig which can simulate a range of possible fuel system faults. The rig is fully instrumented in order to allow benchmarking of various sensing solution for fault detection/isolation that were identified using functional analysis

    Reliability Analysis of Complex NASA Systems with Model-Based Engineering

    Get PDF
    The emergence of model-based engineering, with Model- Based Systems Engineering (MBSE) leading the way, is transforming design and analysis methodologies. The recognized benefits to systems development include moving from document-centric information systems and document-centric project communication to a model-centric environment in which control of design changes in the life cycles is facilitated. In addition, a single source of truth about the system, that is up-to-date in all respects of the design, becomes the authoritative source of data and information about the system. This promotes consistency and efficiency in regard to integration of the system elements as the design emerges and thereby may further optimize the design. Therefore Reliability Engineers (REs) supporting NASA missions must be integrated into model-based engineering to ensure the outputs of their analyses are relevant and value-needed to the design, development, and operational processes for failure risks assessment and communication
    • …
    corecore