5,446 research outputs found

    Including Item Characteristics in the Probabilistic Latent Semantic Analysis Model for Collaborative Filtering

    Get PDF
    We propose a new hybrid recommender system that combines some advantages of collaborative and content-based recommender systems. While it uses ratings data of all users, as do collaborative recommender systems, it is also able to recommend new items and provide an explanation of its recommendations, as do content-based systems. Our approach is based on the idea that there are communities of users that find the same characteristics important to like or dislike a product. This model is an extension of the probabilistic latent semantic model for collaborative filtering with ideas based on clusterwise linear regression. On a movie data set, we show that the model is competitive to other recommenders and can be used to explain the recommendations to the users.algorithms;probabilistic latent semantic analysis;hybrid recommender systems;recommender systems

    Preference Networks: Probabilistic Models for Recommendation Systems

    Full text link
    Recommender systems are important to help users select relevant and personalised information over massive amounts of data available. We propose an unified framework called Preference Network (PN) that jointly models various types of domain knowledge for the task of recommendation. The PN is a probabilistic model that systematically combines both content-based filtering and collaborative filtering into a single conditional Markov random field. Once estimated, it serves as a probabilistic database that supports various useful queries such as rating prediction and top-NN recommendation. To handle the challenging problem of learning large networks of users and items, we employ a simple but effective pseudo-likelihood with regularisation. Experiments on the movie rating data demonstrate the merits of the PN.Comment: In Proc. of 6th Australasian Data Mining Conference (AusDM), Gold Coast, Australia, pages 195--202, 200

    Multidimensional Membership Mixture Models

    Full text link
    We present the multidimensional membership mixture (M3) models where every dimension of the membership represents an independent mixture model and each data point is generated from the selected mixture components jointly. This is helpful when the data has a certain shared structure. For example, three unique means and three unique variances can effectively form a Gaussian mixture model with nine components, while requiring only six parameters to fully describe it. In this paper, we present three instantiations of M3 models (together with the learning and inference algorithms): infinite, finite, and hybrid, depending on whether the number of mixtures is fixed or not. They are built upon Dirichlet process mixture models, latent Dirichlet allocation, and a combination respectively. We then consider two applications: topic modeling and learning 3D object arrangements. Our experiments show that our M3 models achieve better performance using fewer topics than many classic topic models. We also observe that topics from the different dimensions of M3 models are meaningful and orthogonal to each other.Comment: 9 pages, 7 figure
    • 

    corecore