4,132 research outputs found

    A probabilistic representation for the value of zero-sum differential games with incomplete information on both sides

    Get PDF
    We prove that for a class of zero-sum differential games with incomplete information on both sides, the value admits a probabilistic representation as the value of a zero-sum stochastic differential game with complete information, where both players control a continuous martingale. A similar representation as a control problem over discontinuous martingales was known for games with incomplete information on one side (see Cardaliaguet-Rainer [8]), and our result is a continuous-time analog of the so called splitting-game introduced in Laraki [20] and Sorin [27] in order to analyze discrete-time models. It was proved by Cardaliaguet [4, 5] that the value of the games we consider is the unique solution of some Hamilton-Jacobi equation with convexity constraints. Our result provides therefore a new probabilistic representation for solutions of Hamilton-Jacobi equations with convexity constraints as values of stochastic differential games with unbounded control spaces and unbounded volatility

    Zero-sum stopping games with asymmetric information

    Get PDF
    We study a model of two-player, zero-sum, stopping games with asymmetric information. We assume that the payoff depends on two continuous-time Markov chains (X, Y), where X is only observed by player 1 and Y only by player 2, implying that the players have access to stopping times with respect to different filtrations. We show the existence of a value in mixed stopping times and provide a variational characterization for the value as a function of the initial distribution of the Markov chains. We also prove a verification theorem for optimal stopping rules which allows to construct optimal stopping times. Finally we use our results to solve explicitly two generic examples

    Markov games with frequent actions and incomplete information

    Full text link
    We study a two-player, zero-sum, stochastic game with incomplete information on one side in which the players are allowed to play more and more frequently. The informed player observes the realization of a Markov chain on which the payoffs depend, while the non-informed player only observes his opponent's actions. We show the existence of a limit value as the time span between two consecutive stages vanishes; this value is characterized through an auxiliary optimization problem and as the solution of an Hamilton-Jacobi equation

    Advances in Zero-Sum Dynamic Games

    Get PDF
    International audienceThe survey presents recent results in the theory of two-person zero-sum repeated games and their connections with differential and continuous-time games. The emphasis is made on the following(1) A general model allows to deal simultaneously with stochastic and informational aspects.(2) All evaluations of the stage payoffs can be covered in the same framework (and not only the usual Cesàro and Abel means).(3) The model in discrete time can be seen and analyzed as a discretization of a continuous time game. Moreover, tools and ideas from repeated games are very fruitful for continuous time games and vice versa.(4) Numerous important conjectures have been answered (some in the negative).(5) New tools and original models have been proposed. As a consequence, the field (discrete versus continuous time, stochastic versus incomplete information models) has a much more unified structure, and research is extremely active

    Games with incomplete information in continuous time and for continuous types

    Full text link
    We consider a two-player zero-sum game with integral payoff and with incomplete information on one side, where the payoff is chosen among a continuous set of possible payoffs. We prove that the value function of this game is solution of an auxiliary optimization problem over a set of measure-valued processes. Then we use this equivalent formulation to characterize the value function as the viscosity solution of a special type of a Hamilton-Jacobi equation. This paper generalizes the results of a previous work of the authors, where only a finite number of possible payoffs is considered
    • …
    corecore