2 research outputs found

    A Computational Framework for Learning from Complex Data: Formulations, Algorithms, and Applications

    Get PDF
    Many real-world processes are dynamically changing over time. As a consequence, the observed complex data generated by these processes also evolve smoothly. For example, in computational biology, the expression data matrices are evolving, since gene expression controls are deployed sequentially during development in many biological processes. Investigations into the spatial and temporal gene expression dynamics are essential for understanding the regulatory biology governing development. In this dissertation, I mainly focus on two types of complex data: genome-wide spatial gene expression patterns in the model organism fruit fly and Allen Brain Atlas mouse brain data. I provide a framework to explore spatiotemporal regulation of gene expression during development. I develop evolutionary co-clustering formulation to identify co-expressed domains and the associated genes simultaneously over different temporal stages using a mesh-generation pipeline. I also propose to employ the deep convolutional neural networks as a multi-layer feature extractor to generate generic representations for gene expression pattern in situ hybridization (ISH) images. Furthermore, I employ the multi-task learning method to fine-tune the pre-trained models with labeled ISH images. My proposed computational methods are evaluated using synthetic data sets and real biological data sets including the gene expression data from the fruit fly BDGP data sets and Allen Developing Mouse Brain Atlas in comparison with baseline existing methods. Experimental results indicate that the proposed representations, formulations, and methods are efficient and effective in annotating and analyzing the large-scale biological data sets

    Biclustering of gene expression data by non-smooth non-negative matrix factorization

    Get PDF
    BACKGROUND: The extended use of microarray technologies has enabled the generation and accumulation of gene expression datasets that contain expression levels of thousands of genes across tens or hundreds of different experimental conditions. One of the major challenges in the analysis of such datasets is to discover local structures composed by sets of genes that show coherent expression patterns across subsets of experimental conditions. These patterns may provide clues about the main biological processes associated to different physiological states. RESULTS: In this work we present a methodology able to cluster genes and conditions highly related in sub-portions of the data. Our approach is based on a new data mining technique, Non-smooth Non-Negative Matrix Factorization (nsNMF), able to identify localized patterns in large datasets. We assessed the potential of this methodology analyzing several synthetic datasets as well as two large and heterogeneous sets of gene expression profiles. In all cases the method was able to identify localized features related to sets of genes that show consistent expression patterns across subsets of experimental conditions. The uncovered structures showed a clear biological meaning in terms of relationships among functional annotations of genes and the phenotypes or physiological states of the associated conditions. CONCLUSION: The proposed approach can be a useful tool to analyze large and heterogeneous gene expression datasets. The method is able to identify complex relationships among genes and conditions that are difficult to identify by standard clustering algorithms
    corecore