634 research outputs found

    Quantitative Analysis of DoS Attacks and Client Puzzles in IoT Systems

    Full text link
    Denial of Service (DoS) attacks constitute a major security threat to today's Internet. This challenge is especially pertinent to the Internet of Things (IoT) as devices have less computing power, memory and security mechanisms to mitigate DoS attacks. This paper presents a model that mimics the unique characteristics of a network of IoT devices, including components of the system implementing `Crypto Puzzles' - a DoS mitigation technique. We created an imitation of a DoS attack on the system, and conducted a quantitative analysis to simulate the impact such an attack may potentially exert upon the system, assessing the trade off between security and throughput in the IoT system. We model this through stochastic model checking in PRISM and provide evidence that supports this as a valuable method to compare the efficiency of different implementations of IoT systems, exemplified by a case study

    A Security Analysis of the Danish Deposit Return System

    Get PDF

    Quantitative Analysis for Authentication of Low-cost RFID Tags

    Full text link
    Formal analysis techniques are widely used today in order to verify and analyze communication protocols. In this work, we launch a quantitative verification analysis for the low- cost Radio Frequency Identification (RFID) protocol proposed by Song and Mitchell. The analysis exploits a Discrete-Time Markov Chain (DTMC) using the well-known PRISM model checker. We have managed to represent up to 100 RFID tags communicating with a reader and quantify each RFID session according to the protocol's computation and transmission cost requirements. As a consequence, not only does the proposed analysis provide quantitative verification results, but also it constitutes a methodology for RFID designers who want to validate their products under specific cost requirements.Comment: To appear in the 36th IEEE Conference on Local Computer Networks (LCN 2011

    Unified architecture of mobile ad hoc network security (MANS) system

    Get PDF
    In this dissertation, a unified architecture of Mobile Ad-hoc Network Security (MANS) system is proposed, under which IDS agent, authentication, recovery policy and other policies can be defined formally and explicitly, and are enforced by a uniform architecture. A new authentication model for high-value transactions in cluster-based MANET is also designed in MANS system. This model is motivated by previous works but try to use their beauties and avoid their shortcomings, by using threshold sharing of the certificate signing key within each cluster to distribute the certificate services, and using certificate chain and certificate repository to achieve better scalability, less overhead and better security performance. An Intrusion Detection System is installed in every node, which is responsible for colleting local data from its host node and neighbor nodes within its communication range, pro-processing raw data and periodically broadcasting to its neighborhood, classifying normal or abnormal based on pro-processed data from its host node and neighbor nodes. Security recovery policy in ad hoc networks is the procedure of making a global decision according to messages received from distributed IDS and restore to operational health the whole system if any user or host that conducts the inappropriate, incorrect, or anomalous activities that threaten the connectivity or reliability of the networks and the authenticity of the data traffic in the networks. Finally, quantitative risk assessment model is proposed to numerically evaluate MANS security
    • …
    corecore