214 research outputs found

    Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey

    Full text link
    A traffic monitoring system is an integral part of Intelligent Transportation Systems (ITS). It is one of the critical transportation infrastructures that transportation agencies invest a huge amount of money to collect and analyze the traffic data to better utilize the roadway systems, improve the safety of transportation, and establish future transportation plans. With recent advances in MEMS, machine learning, and wireless communication technologies, numerous innovative traffic monitoring systems have been developed. In this article, we present a review of state-of-the-art traffic monitoring systems focusing on the major functionality--vehicle classification. We organize various vehicle classification systems, examine research issues and technical challenges, and discuss hardware/software design, deployment experience, and system performance of vehicle classification systems. Finally, we discuss a number of critical open problems and future research directions in an aim to provide valuable resources to academia, industry, and government agencies for selecting appropriate technologies for their traffic monitoring applications.Comment: Published in IEEE Acces

    Vehicle classification in intelligent transport systems: an overview, methods and software perspective

    Get PDF
    Vehicle Classification (VC) is a key element of Intelligent Transportation Systems (ITS). Diverse ranges of ITS applications like security systems, surveillance frameworks, fleet monitoring, traffic safety, and automated parking are using VC. Basically, in the current VC methods, vehicles are classified locally as a vehicle passes through a monitoring area, by fixed sensors or using a compound method. This paper presents a pervasive study on the state of the art of VC methods. We introduce a detailed VC taxonomy and explore the different kinds of traffic information that can be extracted via each method. Subsequently, traditional and cutting edge VC systems are investigated from different aspects. Specifically, strengths and shortcomings of the existing VC methods are discussed and real-time alternatives like Vehicular Ad-hoc Networks (VANETs) are investigated to convey physical as well as kinematic characteristics of the vehicles. Finally, we review a broad range of soft computing solutions involved in VC in the context of machine learning, neural networks, miscellaneous features, models and other methods

    Reliability of Training Data Sets for ML Classifiers: a Lesson Learned from Mechanical Engineering

    Get PDF
    The popularity of learning and predictive technologies, across many problem domains, is unprecedented and it is often underpinned with the fact that we efficiently compute with vast amounts of data and data types, and thus should be able to resolve problems, which we could not in the past. This view is particularly common among scientists who believe that the excessive amount of data, we generate in real life, is ideal for performing predictions and training algorithms. However, the truth might be quite different. The paper illustrates the process of preparing a training data set for an ML classifier, which should predict certain conditions in mechanical engineering. It was not the case that it was difficult to define and choose classifiers, in order to secure safe predictions. It was our inability to create a safe, reliable and trustworthy training data set, from scientifically proven experiments, which created the problem. This places serious doubts on the way we use learning and predictive technologies today. It remains debatable what the next step should be. However, if in ML algorithms, and classifiers in particular, the semantic which is built-in data sets, influences classifier’s definition, it would be very difficult to evaluate and rely on them, before we understand data semantics fully. In other words, we still do not know how the semantic, sometimes hidden in a data set, can adversely affect algorithms trained by them

    Improved California Truck Traffic Census Reporting and Spatial Activity Measurement

    Get PDF
    UC-ITS-2019-37The Federal Highway Administration (FHWA) vehicle classification scheme is designed to serve various transportation operational and planning needs. Many transportation agencies rely on Weigh-In-Motion and automatic vehicle classification sites to collect vehicle classification count data. However, these systems are not widely deployed due to high installation and operations costs. One cost-effective approach investigated by researchers has been the use of single inductive loop sensors as an alternative to obtain FHWA vehicle classification data. However, most models do not accurately classify under-represented classes, even though many of these minority classes pose disproportionally adverse impacts on pavement infrastructure and the environment. As a consequence, previous models have not been able to adequately classify under-represented classes, and the overall performance of the models are often masked by excellent classification accuracy of the majority classes, such as passenger vehicles and five-axle tractor trailers. This project developed a bootstrap aggregating (bagging) deep neural network (DNN) model on a truck-focused dataset obtained from Truck Activity Monitoring System (TAMS) sites, which leverage existing inductive loop sensor infrastructure coupled with deployed inductive loop signature technology, and already deployed statewide at over ninety locations across all Caltrans Districts. The proposed method significantly improved the model performance on truck-related classes, especially minority classes such as Classes 7 and 11 which were overlooked in previous research studies. Remarkably, the proposed model is also capable of distinguishing classes with overlapping axle configuration, which is generally a challenge for axle-based sensor systems

    ICWIM8 - 8th Conference on Weigh-in-Motion - Book of proceedings

    Get PDF
    ICWIM8, 8th International Conference on Weigh-in-Motion, PRAGUE, TCHÈQUE, RÉPUBLIQUE, 20-/05/2019 - 24/05/2019The conference addresses the broad range of topics related to on-road and in-vehicle WIM technology, its research, installation and operation and use of mass data across variable end-uses. Innovative technologies and experiences of WIM system implementation are presented. Application of WIM data to infrastructure, mainly bridges and pavements, is among the main topics. However, the most demanding application is now WIM for enforcement, and the greatest challenge is WIM for direct enforcement. Most of the countries and road authorities should ensure a full compliance of heavy vehicle weights and dimensions with the current regulations. Another challenging objective is to extend the lifetimes of existing road assets, despite of increasing heavy vehicle loads and flow, and without compromising with the structural safety. Fair competition and road charging also require accurately monitoring commercial vehicle weights by WIM. WIM contributes to a global ITS (Intelligent Transport System) providing useful data on heavy good vehicles to implement Performance Based Standards (PBS) and Intelligent Access Programme (IAP, Australia) or Smart Infrastructure Access Programme (SIAP). The conference reports the latest research and developments since the last conference in 2016, from all around the World. More than 150 delegates from 33 countries and all continents are attending ICWIM8, mixing academics, end users, decision makers and WIM vendors. An industrial exhibition is organized jointly with the conference

    Response-based methods to measure road surface irregularity: a state-of-the-art review

    Get PDF
    "jats:sec" "jats:title"Purpose"/jats:title" "jats:p"With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface conditions have emerged in the recent decade. Various techniques and systems have been developed to measure road profiles and detect road anomalies for multiple purposes such as expedient maintenance of pavements and adaptive control of vehicle dynamics to improve ride comfort and ride handling. A holistic review of studies into modern response-based techniques for road pavement applications is found to be lacking. Herein, the focus of this article is threefold: to provide an overview of the state-of-the-art response-based methods, to highlight key differences between methods and thereby to propose key focus areas for future research."/jats:p" "/jats:sec" "jats:sec" "jats:title"Methods"/jats:title" "jats:p"Available articles regarding response-based methods to measure road surface condition were collected mainly from “Scopus” database and partially from “Google Scholar”. The search period is limited to the recent 15 years. Among the 130 reviewed documents, 37% are for road profile reconstruction, 39% for pothole detection and the remaining 24% for roughness index estimation."/jats:p" "/jats:sec" "jats:sec" "jats:title"Results"/jats:title" "jats:p"The results show that machine-learning techniques/data-driven methods have been used intensively with promising results but the disadvantages on data dependence have limited its application in some instances as compared to analytical/data processing methods. Recent algorithms to reconstruct/estimate road profiles are based mainly on passive suspension and quarter-vehicle-model, utilise fewer key parameters, being independent on speed variation and less computation for real-time/online applications. On the other hand, algorithms for pothole detection and road roughness index estimation are increasingly focusing on GPS accuracy, data aggregation and crowdsourcing platform for large-scale application. However, a novel and comprehensive system that is comparable to existing International Roughness Index and conventional Pavement Management System is still lacking."/jats:p" "/jats:sec Document type: Articl

    Internet multimedia traffic classification from QoS perspective using semi-supervised dictionary learning models

    Get PDF
    To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service (QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition (K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bag-QoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoS-words, Locality Constrained Feature Coding (LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines (SVM) classifier. Our experimental results demonstrate the feasibility of the proposed classification method
    corecore