48 research outputs found

    Spatio-temporal linking of multiple SAR satellite data from medium and high resolution Radarsat-2 images

    Get PDF
    A recent development in Interferometric Synthetic Aperture Radar (InSAR) technology is integrating multiple SAR satellite data to dynamically extract ground features. This paper addresses two relevant challenges: identification of common ground targets from different SAR datasets in space, and concatenation of time series when dealing with temporal dynamics. To address the first challenge, we describe the geolocation uncertainty of InSAR measurements as a three-dimensional error ellipsoid. The points, among InSAR measurements, which have error ellipsoids with a positive cross volume are identified as tie-point pairs representing common ground objects from multiple SAR datasets. The cross volumes are calculated using Monte Carlo methods and serve as weights to achieve the equivalent deformation time series. To address the second challenge, the deformation time series model for each tie-point pair is estimated using probabilistic methods, where potential deformation models are efficiently tested and evaluated. As an application, we integrated two Radarsat-2 datasets in Standard and Extra-Fine modes to map the subsidence of the west of the Netherlands between 2010 and 2017. We identified 18128 tie-point pairs, 5 intersection types of error ellipsoids, 5 deformation models, and constructed their long-term deformation time series. The detected maximum mean subsidence velocity in Line-Of-Sight direction is up to 15 mmyr-1. We conclude that our method removes limitations that exist in single-viewing-geometry SAR when integrating multiple SAR data. In particular, the proposed time-series modeling method is useful to achieve a long-term deformation time series of multiple datasets

    InSAR Displacement Time Series Mining: A Machine Learning Approach

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR)-derivedsurface displacement time series enable a wide range of ap-plications from urban structural monitoring to geohazardassessment.With systematic data acquisitions becomingthe new norm for SAR missions, millions of time series arecontinuously generated. Machine Learning provides a frame-work for the efficient mining of such big data. Here, we focuson unsupervised mining of the data via clustering the similartemporal patterns and data-driven displacement signal re-construction from the InSAR time series. We propose a deepLong Short Term Memory (LSTM) autoencoder model whichcan exploit temporal relations in contrast to the commonlyused shallow learning methods, such as Uniform ManifoldApproximation and Projection (UMAP). We also modify theloss function to allow the quantification of uncertainties inthe time series data. The two approaches are applied to theLazufre Volcanic Complex located at the central volcaniczone of the Andes and thereby compared

    Vulnerability Assessment of Buildings due to Land Subsidence using InSAR Data in the Ancient Historical City of Pistoia (Italy)

    Get PDF
    The launch of the medium resolution Synthetic Aperture Radar (SAR) Sentinel-1 constellation in 2014 has allowed public and private organizations to introduce SAR interferometry (InSAR) products as a valuable option in their monitoring systems. The massive stacks of displacement data resulting from the processing of large C-B and radar images can be used to highlight temporal and spatial deformation anomalies, and their detailed analysis and postprocessing to generate operative products for final users. In this work, the wide-area mapping capability of Sentinel-1 was used in synergy with the COSMO-SkyMed high resolution SAR data to characterize ground subsidence affecting the urban fabric of the city of Pistoia (Tuscany Region, central Italy). Line of sight velocities were decomposed on vertical and E–W components, observing slight horizontal movements towards the center of the subsidence area. Vertical displacements and damage field surveys allowed for the calculation of the probability of damage depending on the displacement velocity by means of fragility curves. Finally, these data were translated to damage probability and potential loss maps. These products are useful for urban planning and geohazard management, focusing on the identification of the most hazardous areas on which to concentrate efforts and resources.This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the State Agency of Research (AEI) and European Funds for Regional Development (FEDER) under projects AQUARISK (ESP2013-47780-C2-2-R) and TEMUSA (TEC2017-85244-C2-1-P) and STAR-EO (TIN2014-55413-C2-2-P). The first author shows gratitude for the PhD student contract BES-2014-069076. The work was conceived during the research stay of P. Ezquerro and R. Tomás in the Università degli Studi di Firenze and the research stay of G. Herrera in the IGOT Lisbon University, supported by the Spanish Ministry of Education, Culture and Sport under fellowships EEBB-I-18-13014, PRX17/00439 and PRX19/00065, respectively. The S-1 monitoring activity is funded and supported by the Tuscany Region under the agreement “Monitoring ground deformation in the Tuscany Region with satellite radar data.” The authors also gratefully acknowledge TRE ALTAMIRA for having processed the S-1 data. The project was carried out using CSK® Products, © ASI (Italian Space Agency), delivered under the ASI Project Id Science 678 - “High resolution Subsidence investigation in the urban area of Pistoia (Tuscany Region, central Italy). The work is under the framework of the e-shape project, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 820852. This paper is also supported by the PRIMA programme under grant agreement No 1924, project RESERVOIR. The PRIMA programme is supported by the European Union
    corecore