8,081 research outputs found

    Execution Integrity with In-Place Encryption

    Full text link
    Instruction set randomization (ISR) was initially proposed with the main goal of countering code-injection attacks. However, ISR seems to have lost its appeal since code-injection attacks became less attractive because protection mechanisms such as data execution prevention (DEP) as well as code-reuse attacks became more prevalent. In this paper, we show that ISR can be extended to also protect against code-reuse attacks while at the same time offering security guarantees similar to those of software diversity, control-flow integrity, and information hiding. We present Scylla, a scheme that deploys a new technique for in-place code encryption to hide the code layout of a randomized binary, and restricts the control flow to a benign execution path. This allows us to i) implicitly restrict control-flow targets to basic block entries without requiring the extraction of a control-flow graph, ii) achieve execution integrity within legitimate basic blocks, and iii) hide the underlying code layout under malicious read access to the program. Our analysis demonstrates that Scylla is capable of preventing state-of-the-art attacks such as just-in-time return-oriented programming (JIT-ROP) and crash-resistant oriented programming (CROP). We extensively evaluate our prototype implementation of Scylla and show feasible performance overhead. We also provide details on how this overhead can be significantly reduced with dedicated hardware support

    Mandate-driven networking eco-system : a paradigm shift in end-to-end communications

    Get PDF
    The wireless industry is driven by key stakeholders that follow a holistic approach of "one-system-fits-all" that leads to moving network functionality of meeting stringent End-to-End (E2E) communication requirements towards the core and cloud infrastructures. This trend is limiting smaller and new players for bringing in new and novel solutions. For meeting these E2E requirements, tenants and end-users need to be active players for bringing their needs and innovations. Driving E2E communication not only in terms of quality of service (QoS) but also overall carbon footprint and spectrum efficiency from one specific community may lead to undesirable simplifications and a higher level of abstraction of other network segments may lead to sub-optimal operations. Based on this, the paper presents a paradigm shift that will enlarge the role of wireless innovation at academia, Small and Medium-sized Enterprises (SME)'s, industries and start-ups while taking into account decentralized mandate-driven intelligence in E2E communications

    A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

    Get PDF
    People increasingly rely on their mobile devices and use them to store a lot of data. Some of the data are personal and private, whose leakage leads to users\u27 privacy harm. Meanwhile, mobile apps and services over-collect users\u27 data due to the coarse-grained access control approach utilized by the mobile operating system. We propose a cloud-based approach to provide fine-grained access control toward data requests. We add privacy level, as a new metadata, to data and manage the storage using different policies correspondingly. However, the proposed approach leads to performance decreases because of the extra communication cost. We also introduce a novel cache mechanism to eliminate the extra cost by storing non-private and popular data on the mobile device. As part of our cache mechanism, we design a user-preference-based ordering method along with the principle of locality to determine how popular some data are. We also design a configurable refresh policy to improve the overall performance. Finally, we evaluate our approach using a real phone in a simulated environment. The results show that our approach can keep the response time of all data requests within a reasonable range and the cache mechanism can further improve the performance
    • …
    corecore