1,430 research outputs found

    DeRef: a privacy-preserving defense mechanism against request forgery attacks.

    Get PDF
    Fung, Siu Yuen.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 58-63).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 2 --- Background and Related Work --- p.7Chapter 2.1 --- Request Forgery Attacks --- p.7Chapter 2.2 --- Current Defense Approaches --- p.10Chapter 2.3 --- Lessons Learned --- p.13Chapter 3 --- Design of DeRef --- p.15Chapter 3.1 --- Threat Model --- p.16Chapter 3.2 --- Fine-Grained Access Control --- p.18Chapter 3.3 --- Two-Phase Privacy-Preserving Checking --- p.24Chapter 3.4 --- Putting It All Together --- p.29Chapter 3.5 --- Implementation --- p.33Chapter 4 --- Deployment Case Studies --- p.36Chapter 4.1 --- WordPress --- p.37Chapter 4.2 --- Joomla! and Drupal --- p.42Chapter 5 --- Evaluation --- p.44Chapter 5.1 --- Performance Overhead of DeRef in Real Deployment --- p.45Chapter 5.2 --- Performance Overhead of DeRef with Various Configurations --- p.50Chapter 6 --- Conclusions --- p.56Bibliography --- p.5

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page

    Protection Models for Web Applications

    Get PDF
    Early web applications were a set of static web pages connected to one another. In contrast, modern applications are full-featured programs that are nearly equivalent to desktop applications in functionality. However, web servers and web browsers, which were initially designed for static web pages, have not updated their protection models to deal with the security consequences of these full-featured programs. This mismatch has been the source of several security problems in web applications. This dissertation proposes new protection models for web applications. The design and implementation of prototypes of these protection models in a web server and a web browser are also described. Experiments are used to demonstrate the improvements in security and performance from using these protection models. Finally, this dissertation also describes systematic design methods to support the security of web applications

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    A reputation framework for behavioural history: developing and sharing reputations from behavioural history of network clients

    Get PDF
    The open architecture of the Internet has enabled its massive growth and success by facilitating easy connectivity between hosts. At the same time, the Internet has also opened itself up to abuse, e.g. arising out of unsolicited communication, both intentional and unintentional. It remains an open question as to how best servers should protect themselves from malicious clients whilst offering good service to innocent clients. There has been research on behavioural profiling and reputation of clients, mostly at the network level and also for email as an application, to detect malicious clients. However, this area continues to pose open research challenges. This thesis is motivated by the need for a generalised framework capable of aiding efficient detection of malicious clients while being able to reward clients with behaviour profiles conforming to the acceptable use and other relevant policies. The main contribution of this thesis is a novel, generalised, context-aware, policy independent, privacy preserving framework for developing and sharing client reputation based on behavioural history. The framework, augmenting existing protocols, allows fitting in of policies at various stages, thus keeping itself open and flexible to implementation. Locally recorded behavioural history of clients with known identities are translated to client reputations, which are then shared globally. The reputations enable privacy for clients by not exposing the details of their behaviour during interactions with the servers. The local and globally shared reputations facilitate servers in selecting service levels, including restricting access to malicious clients. We present results and analyses of simulations, with synthetic data and some proposed example policies, of client-server interactions and of attacks on our model. Suggestions presented for possible future extensions are drawn from our experiences with simulation
    • ā€¦
    corecore