35,678 research outputs found

    Privacy-Friendly Mobility Analytics using Aggregate Location Data

    Get PDF
    Location data can be extremely useful to study commuting patterns and disruptions, as well as to predict real-time traffic volumes. At the same time, however, the fine-grained collection of user locations raises serious privacy concerns, as this can reveal sensitive information about the users, such as, life style, political and religious inclinations, or even identities. In this paper, we study the feasibility of crowd-sourced mobility analytics over aggregate location information: users periodically report their location, using a privacy-preserving aggregation protocol, so that the server can only recover aggregates -- i.e., how many, but not which, users are in a region at a given time. We experiment with real-world mobility datasets obtained from the Transport For London authority and the San Francisco Cabs network, and present a novel methodology based on time series modeling that is geared to forecast traffic volumes in regions of interest and to detect mobility anomalies in them. In the presence of anomalies, we also make enhanced traffic volume predictions by feeding our model with additional information from correlated regions. Finally, we present and evaluate a mobile app prototype, called Mobility Data Donors (MDD), in terms of computation, communication, and energy overhead, demonstrating the real-world deployability of our techniques.Comment: Published at ACM SIGSPATIAL 201

    Trade Privacy for Utility: A Learning-Based Privacy Pricing Game in Federated Learning

    Full text link
    To prevent implicit privacy disclosure in sharing gradients among data owners (DOs) under federated learning (FL), differential privacy (DP) and its variants have become a common practice to offer formal privacy guarantees with low overheads. However, individual DOs generally tend to inject larger DP noises for stronger privacy provisions (which entails severe degradation of model utility), while the curator (i.e., aggregation server) aims to minimize the overall effect of added random noises for satisfactory model performance. To address this conflicting goal, we propose a novel dynamic privacy pricing (DyPP) game which allows DOs to sell individual privacy (by lowering the scale of locally added DP noise) for differentiated economic compensations (offered by the curator), thereby enhancing FL model utility. Considering multi-dimensional information asymmetry among players (e.g., DO's data distribution and privacy preference, and curator's maximum affordable payment) as well as their varying private information in distinct FL tasks, it is hard to directly attain the Nash equilibrium of the mixed-strategy DyPP game. Alternatively, we devise a fast reinforcement learning algorithm with two layers to quickly learn the optimal mixed noise-saving strategy of DOs and the optimal mixed pricing strategy of the curator without prior knowledge of players' private information. Experiments on real datasets validate the feasibility and effectiveness of the proposed scheme in terms of faster convergence speed and enhanced FL model utility with lower payment costs.Comment: Accepted by IEEE ICC202

    Federated Learning Framework Coping with Hierarchical Heterogeneity in Cooperative ITS

    Full text link
    In this paper, we introduce a federated learning framework coping with Hierarchical Heterogeneity (H2-Fed), which can notably enhance the conventional pre-trained deep learning model. The framework exploits data from connected public traffic agents in vehicular networks without affecting user data privacy. By coordinating existing traffic infrastructure, including roadside units and road traffic clouds, the model parameters are efficiently disseminated by vehicular communications and hierarchically aggregated. Considering the individual heterogeneity of data distribution, computational and communication capabilities across traffic agents and roadside units, we employ a novel method that addresses the heterogeneity of different aggregation layers of the framework architecture, i.e., aggregation in layers of roadside units and cloud. The experiment results indicate that our method can well balance the learning accuracy and stability according to the knowledge of heterogeneity in current communication networks. Compared to other baseline approaches, the evaluation on a Non-IID MNIST dataset shows that our framework is more general and capable especially in application scenarios with low communication quality. Even when 90% of the agents are timely disconnected, the pre-trained deep learning model can still be forced to converge stably, and its accuracy can be enhanced from 68% to over 90% after convergence

    User's Privacy in Recommendation Systems Applying Online Social Network Data, A Survey and Taxonomy

    Full text link
    Recommender systems have become an integral part of many social networks and extract knowledge from a user's personal and sensitive data both explicitly, with the user's knowledge, and implicitly. This trend has created major privacy concerns as users are mostly unaware of what data and how much data is being used and how securely it is used. In this context, several works have been done to address privacy concerns for usage in online social network data and by recommender systems. This paper surveys the main privacy concerns, measurements and privacy-preserving techniques used in large-scale online social networks and recommender systems. It is based on historical works on security, privacy-preserving, statistical modeling, and datasets to provide an overview of the technical difficulties and problems associated with privacy preserving in online social networks.Comment: 26 pages, IET book chapter on big data recommender system
    • …
    corecore