4,518 research outputs found

    Energy managed reporting for wireless sensor networks

    No full text
    In this paper, we propose a technique to extend the network lifetime of a wireless sensor network, whereby each sensor node decides its individual network involvement based on its own energy resources and the information contained in each packet. The information content is ascertained through a system of rules describing prospective events in the sensed environment, and how important such events are. While the packets deemed most important are propagated by all sensor nodes, low importance packets are handled by only the nodes with high energy reserves. Results obtained from simulations depicting a wireless sensor network used to monitor pump temperature in an industrial environment have shown that a considerable increase in the network lifetime and network connectivity can be obtained. The results also show that when coupled with a form of energy harvesting, our technique can enable perpetual network operatio

    M-ATTEMPT: A New Energy-Efficient Routing Protocol for Wireless Body Area Sensor Networks

    Get PDF
    In this paper, we propose a new routing protocol for heterogeneous Wireless Body Area Sensor Networks (WBASNs); Mobility-supporting Adaptive Threshold-based Thermal-aware Energy-efficientMulti-hop ProTocol (M-ATTEMPT). A prototype is defined for employing heterogeneous sensors on human body. Direct communication is used for real-time traffic (critical data) or on-demand data while Multi-hop communication is used for normal data delivery. One of the prime challenges in WBASNs is sensing of the heat generated by the implanted sensor nodes. The proposed routing algorithm is thermal-aware which senses the link Hot-spot and routes the data away from these links. Continuous mobility of human body causes disconnection between previous established links. So, mobility support and energy-management is introduced to overcome the problem. Linear Programming (LP) model for maximum information extraction and minimum energy consumption is presented in this study. MATLAB simulations of proposed routing algorithm are performed for lifetime and successful packet delivery in comparison with Multi-hop communication. The results show that the proposed routing algorithm has less energy consumption and more reliable as compared to Multi-hop communication.Comment: arXiv admin note: substantial text overlap with arXiv:1208.609

    Distance Aware Relaying Energy-efficient: DARE to Monitor Patients in Multi-hop Body Area Sensor Networks

    Full text link
    In recent years, interests in the applications of Wireless Body Area Sensor Network (WBASN) is noticeably developed. WBASN is playing a significant role to get the real time and precise data with reduced level of energy consumption. It comprises of tiny, lightweight and energy restricted sensors, placed in/on the human body, to monitor any ambiguity in body organs and measure various biomedical parameters. In this study, a protocol named Distance Aware Relaying Energy-efficient (DARE) to monitor patients in multi-hop Body Area Sensor Networks (BASNs) is proposed. The protocol operates by investigating the ward of a hospital comprising of eight patients, under different topologies by positioning the sink at different locations or making it static or mobile. Seven sensors are attached to each patient, measuring different parameters of Electrocardiogram (ECG), pulse rate, heart rate, temperature level, glucose level, toxins level and motion. To reduce the energy consumption, these sensors communicate with the sink via an on-body relay, affixed on the chest of each patient. The body relay possesses higher energy resources as compared to the body sensors as, they perform aggregation and relaying of data to the sink node. A comparison is also conducted conducted with another protocol of BAN named, Mobility-supporting Adaptive Threshold-based Thermal-aware Energy-efficient Multi-hop ProTocol (M-ATTEMPT). The simulation results show that, the proposed protocol achieves increased network lifetime and efficiently reduces the energy consumption, in relative to M-ATTEMPT protocol.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Resource Aware Sensor Nodes in Wireless Sensor Networks

    No full text
    Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    corecore