13,311 research outputs found

    On a generic class of two-node queueing systems

    Get PDF
    This paper analyzes a generic class of two-node queueing systems. A first queue is fed by an on-off Markov fluid source; the input of a second queue is a function of the state of the Markov fluid source as well, but now also of the first queue being empty or not. This model covers the classical two-node tandem queue and the two-class priority queue as special cases. Relying predominantly on probabilistic argumentation, the steady-state buffer content of both queues is determined (in terms of its Laplace transform). Interpreting the buffer content of the second queue in terms of busy periods of the first queue, the (exact) tail asymptotics of the distribution of the second queue are found. Two regimes can be distinguished: a first in which the state of the first queue (that is, being empty or not) hardly plays a role, and a second in which it explicitly does. This dichotomy can be understood by using large-deviations heuristics

    A first passage time problem for spectrally positive LĂ©vy processes and its application to a dynamic priority queue

    Get PDF
    We study a first passage time problem for a class of spectrally positive LĂ©vy processes. By considering the special case where the LĂ©vy process is a compound Poisson process with negative drift, we obtain the Laplace–Stieltjes transform of the steady-state waiting time distribution of low-priority customers in a two-class M/GI/1 queue operating under a dynamic non-preemptive priority discipline. This allows us to observe how the waiting time of customers is affected as the policy parameter varies

    Rejoinder on: queueing models for the analysis of communication systems

    Get PDF
    In this rejoinder, we respond to the comments and questions of three discussants of our paper on queueing models for the analysis of communication systems. Our responses are structured around two main topics: discrete-time modeling and further extensions of the presented queueing analysis

    Queues and risk models with simultaneous arrivals

    Get PDF
    We focus on a particular connection between queueing and risk models in a multi-dimensional setting. We first consider the joint workload process in a queueing model with parallel queues and simultaneous arrivals at the queues. For the case that the service times are ordered (from largest in the first queue to smallest in the last queue) we obtain the Laplace-Stieltjes transform of the joint stationary workload distribution. Using a multivariate duality argument between queueing and risk models, this also gives the Laplace transform of the survival probability of all books in a multivariate risk model with simultaneous claim arrivals and the same ordering between claim sizes. Other features of the paper include a stochastic decomposition result for the workload vector, and an outline how the two-dimensional risk model with a general two-dimensional claim size distribution (hence without ordering of claim sizes) is related to a known Riemann boundary value problem

    Priority Auctions and Queue Disciplines that Depend on Processing Time

    Get PDF
    Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004We analyze the allocation of priority in queues via simple bidding mechanisms. In our model, the stochastically arriving customers are privately informed about their own processing time. They make bids upon arrival at a queue whose length is unobservable. We consider two bidding schemes that differ in the definition of bids (these may reflect either total payments or payments per unit of time) and in the timing of payments (before, or after service). In both schemes, a customer obtains priority over all customers (waiting in the queue or arriving while he is waiting) who make lower bids. Our main results show how the convexity/concavity of the function expressing the costs of delay determines the queue-discipline (i.e., SPT, LPT) arising in a bidding equilibrium
    • 

    corecore