1,097 research outputs found

    Towards a new generation of transport services adapted to multimedia application

    Get PDF
    Une connexion d'ordre et de fiabilité partiels (POC, partial order connection) est une connexion de transport autorisée à perdre certains objets mais également à les délivrer dans un ordre éventuellement différent de celui d'émission. L'approche POC établit un lien conceptuel entre les protocoles sans connexion au mieux et les protocoles fiables avec connexion. Le concept de POC est motivé par le fait que dans les réseaux hétérogènes sans connexion tels qu'Internet, les paquets transmis sont susceptibles de se perdre et d'arriver en désordre, entraînant alors une réduction des performances des protocoles usuels. De plus, on montre qu'un protocole associé au transport d'un flux multimédia permet une réduction très sensible de l'utilisation des ressources de communication et de mémorisation ainsi qu'une diminution du temps de transit moyen. Dans cet article, une extension temporelle de POC, nommée TPOC (POC temporisé), est introduite. Elle constitue un cadre conceptuel permettant la prise en compte des exigences de qualité de service des applications multimédias réparties. Une architecture offrant un service TPOC est également introduite et évaluée dans le cadre du transport de vidéo MPEG. Il est ainsi démontré que les connexions POC comblent, non seulement le fossé conceptuel entre les protocoles sans connexion et avec connexion, mais aussi qu'ils surpassent les performances des ces derniers lorsque des données multimédias (telles que la vidéo MPEG) sont transportées

    QoS Scalability for Streamed Media Delivery

    Get PDF
    Applications with real-rate progress requirements, such as mediastreaming systems, are difficult to deploy in shared heterogenous environments such as the Internet. On the Internet, mediastreaming systems must be capable of trading off resource requirements against the quality of the media streams they deliver, in order to match wide-ranging dynamic variations in bandwidth between servers and clients. Since quality requirements tend to be user- and task-specific, mechanisms for capturing quality of service requirements and mapping them to appropriate resource-level adaptation policies are required. In this paper, we describe a general approach for automatically mapping user-level quality of service specifications onto resource consumption scaling policies. Quality of service specifications are given through utility functions, and priority packet dropping for layered media streams is the resource scaling technique. The approach emphasizes simple mechanisms, yet facilitates fine-grained policy-driven adaptation over a wide-range of bandwidth levels. We demonstrate the approach in a streamingvideo player that supports user-tailorable quality adaptation policies both for matching its resource consumption requirements to the capabilities of heterogeneous clients, and for responding to dynamic variations in system and network load

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Stereo Vision System for Remotely Operated Robots

    Get PDF

    Adaptive buffer power save mechanism for mobile multimedia streaming

    Get PDF
    With the proliferation of wireless networks, the use of mobile devices to stream multimedia is growing in popularity. Although the devices are improving in that they are becoming smaller, more complex and capable of running more applications than ever before, there is one aspect of them that is lagging behind. Batteries have seen little development, even though they are one of the most important parts of the devices. Multimedia streaming puts extra pressure on batteries, causing them to discharge faster. This often means that streaming tasks can not be completed, resulting in significant user dissatisfaction. Consequently, effort is required to devise mechanisms to enable and increase in battery life while streaming multimedia. In this context, this thesis presents a novel algorithm to save power in mobile devices during the streaming of multimedia content. The proposed Adaptive-Buffer Power Save Mechanism (AB-PSM) controls how the data is sent over wireless networks, achieving significant power savings. There is little or no effect on the user and the algorithm is very simple to implement. The thesis describes tests which show the effectiveness of AB-PSM in comparison with the legacy power save mechanism present in IEEE 802.11. The thesis also presents a detailed overview of the IEEE 802.11 protocols and an in-depth literature review in the area of power saving during multimedia streaming. A novel analysis of how the battery of a mobile device is affected by multimedia streaming in its different stages is given. A total-power-save algorithm is then described as a possible extension to the Adaptive-Buffer Power Save Mechanism

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Delivering video services over IP networks

    Get PDF
    The main goal pursued in this Thesis is to contribute towards the design and development of an end-to-end solution/system that would assist in reliable, consistence, less packet-loss delivery of high-quality video signals of pre-recorded presentations, training lectures, live events such as seminars over standard IP networks. This Thesis will focus on the existing Internet Service Provider, Oman Telecommunications Company (Omantel) and its best delivery of high-bandwidth data such as video to its Local and regional offices and departments over IP networks. This video-over-IP system aims to accumulate the technical scientific knowledge required to be able to offer high-quality video, which is fully scalable over IP networks. It aims to convert this knowledge into experimental prototypes, which, after the Thesis, can be developed into an integrated generic environment for Video-over-IP service development and content production. The objective is to initially define the functionality of content Services that can be incorporated into the operations of Oman telecommunications company networks. Then define the functional characteristics and system requirements necessary for the deployment of content streaming services over Omantel IP based networks. The design of this system would be combined with streaming high-quality video, while maintaining scalability and bandwidth efficiencies required for large-scale enterprise deployment. The design would encompass various components that are needed to capture, store and deliver streaming video to desktops. It will investigate on what is required to deliver quality video over Omantel IP networks and will recommend the actual products and solutions for achieving the end result

    WCAM: secured video surveillance with digital rights management

    Get PDF
    The WCAM project aims to provide an integrated system for secure delivery of video surveillance data over a wireless network, while remaining scalable and robust to transmission errors. To achieve these goals., the content is encoded in Motion-JPEG2000 and streamed with a specific RTP protocol encapsulation to prevent the loss of packets containing the most essential data. Protection of the video data is performed at content level using the standardized JPSEC syntax along with flexible encryption of quality layers or resolution levels. This selective encryption respects the JPEG2000 structure of the stream, not only ensuring end-to-end ciphered delivery, but also enabling dynamic content adaptation within the wireless network (quality of service, adaptation to the user's terminal). A DRM (Digital Rights Management) solution, called OpenSDRM is added to manage all authenticated peers on the WLAN (from end-users to cameras), as well as to manage the rights to access and display conditionally the video data. This whole integrated architecture addresses several security problems such as data encryption, integrity, access control and rights management. Using several protection lavers, the level of confidentiality can depend both on content characteristics and user rights, thus also addressing the critical issue of privacy.info:eu-repo/semantics/acceptedVersio

    Adaptive Content-Aware Scaling for Improved Video Streaming

    Get PDF
    Streaming video applications on the Internet generally have very high bandwidth requirements and yet are often unresponsive to network congestion. In order to avoid congestion collapse and improve video quality, these applications need to respond to congestion in the network by deploying mechanisms to reduce their bandwidth requirements under conditions of heavy load. In reducing bandwidth, video with high motion will look better if all the frames are kept but the frames have low quality, while video with low motion will look better if some frames are dropped but the remaining frames have high quality. Unfortunately current video applications scale to fit the available bandwidth without regard to the video content. In this thesis, we present an adaptive content-aware scaling mechanism that reduces the bandwidth occupied by an application by either dropping frames (temporal scaling) or by reducing the quality of the frames transmitted (quality scaling). We have designed a streaming video client and server with the server capable of quantifying the amount of motion in an MPEG stream and scaling each scene either temporally or by quality as appropriate, maximizing the appearance of each video stream. We have evaluated the impact of content-aware scaling by conducting a user study wherein the subjects rated the quality of video clips that were first scaled temporally and then by quality in order to establish the optimal mechanism for scaling a particular stream. We find that content-aware scaling can improve video quality by as much as 50%. We have also evaluated the practical impact of adaptively scaling the video stream by conducting a user study for longer video clips with varying amounts of motion and available bandwidth. We find that for such clips also the improvement in perceptual quality on account of adaptive content-aware scaling is as high as 30
    corecore