481 research outputs found

    A Study Resource Optimization Techniques Based Job Scheduling in Cloud Computing

    Get PDF
    Cloud computing has revolutionized the way businesses and individuals utilize computing resources. It offers on-demand access to a vast pool of virtualized resources, such as processing power, storage, and networking, through the Internet. One of the key challenges in cloud computing is efficiently scheduling jobs to maximize resource utilization and minimize costs. Job scheduling in cloud computing involves allocating tasks or jobs to available resources in an optimal manner. The objective is to minimize job completion time, maximize resource utilization, and meet various performance metrics such as response time, throughput, and energy consumption. Resource optimization techniques play a crucial role in achieving these objectives. Resource optimization techniques aim to efficiently allocate resources to jobs, taking into account factors like resource availability, job priorities, and constraints. These techniques utilize various algorithms and optimization approaches to make intelligent decisions about resource allocation. Research on resource optimization techniques for job scheduling in cloud computing is of significant importance due to the following reasons: Efficient Resource Utilization: Cloud computing environments consist of a large number of resources that need to be utilized effectively to maximize cost savings and overall system performance. By optimizing job scheduling, researchers can develop algorithms and techniques that ensure efficient utilization of resources, leading to improved productivity and reduced costs. Performance Improvement: Job scheduling plays a crucial role in meeting performance metrics such as response time, throughput, and reliability. By designing intelligent scheduling algorithms, researchers can improve the overall system performance, leading to better user experience and customer satisfaction. Scalability: Cloud computing environments are highly scalable, allowing users to dynamically scale resources based on their needs. Effective job scheduling techniques enable efficient resource allocation and scaling, ensuring that the system can handle varying workloads without compromising performance. Energy Efficiency: Cloud data centres consume significant amounts of energy, and optimizing resource allocation can contribute to energy conservation. By scheduling jobs intelligently, researchers can reduce energy consumption, leading to environmental benefits and cost savings for cloud service providers. Quality of Service (QoS): Cloud computing service providers often have service-level agreements (SLAs) that define the QoS requirements expected by users. Resource optimization techniques for job scheduling can help meet these SLAs by ensuring that jobs are allocated resources in a timely manner, meeting performance guarantees, and maintaining high service availability. Here in this research, we have used the method of the weighted product model (WPM). For the topic of Resource Optimization Techniques Based Job Scheduling in Cloud Computing For calculating the values of alternative and evaluation parameters. A variation of the WSM called the weighted product method (WPM) has been proposed to address some of the weaknesses of The WSM that came before it. The main distinction is that the multiplication is being used in place of additional. The terms "scoring methods" are frequently used to describe WSM and WPM Execution time on Virtual machine, Transmission time (delay)on Virtual machine, Processing cost of a task on virtual machine resource optimization techniques based on job scheduling play a crucial role in maximizing the efficiency and performance of cloud computing systems. By effectively managing and allocating resources, these techniques help minimize costs, reduce energy consumption, and improve overall system throughput. One of the key findings is that intelligent job scheduling algorithms, such as genetic algorithms, ant colony optimization

    A STUDY ON CLOUD COMPUTING EFFICIENT JOB SCHEDULING ALGORITHMS

    Get PDF
    cloud computing is a general term used to depict another class of system based computing that happens over the web. The essential advantage of moving to Clouds is application versatility. Cloud computing is extremely advantageous for the application which are sharing their resources on various hubs. Scheduling the errand is a significant testing in cloud condition. Typically undertakings are planned by client prerequisites. New scheduling techniques should be proposed to defeat the issues proposed by organize properties amongst client and resources. New scheduling systems may utilize a portion of the customary scheduling ideas to consolidate them with some system mindful procedures to give answers for better and more effective employment scheduling. Scheduling technique is the key innovation in cloud computing. This paper gives the study on scheduling calculations. There working regarding the resource sharing. We systemize the scheduling issue in cloud computing, and present a cloud scheduling pecking order

    Multisite adaptive computation offloading for mobile cloud applications

    Get PDF
    The sheer amount of mobile devices and their fast adaptability have contributed to the proliferation of modern advanced mobile applications. These applications have characteristics such as latency-critical and demand high availability. Also, these kinds of applications often require intensive computation resources and excessive energy consumption for processing, a mobile device has limited computation and energy capacity because of the physical size constraints. The heterogeneous mobile cloud environment consists of different computing resources such as remote cloud servers in faraway data centres, cloudlets whose goal is to bring the cloud closer to the users, and nearby mobile devices that can be utilised to offload mobile tasks. Heterogeneity in mobile devices and the different sites include software, hardware, and technology variations. Resource-constrained mobile devices can leverage the shared resource environment to offload their intensive tasks to conserve battery life and improve the overall application performance. However, with such a loosely coupled and mobile device dominating network, new challenges and problems such as how to seamlessly leverage mobile devices with all the offloading sites, how to simplify deploying runtime environment for serving offloading requests from mobile devices, how to identify which parts of the mobile application to offload and how to decide whether to offload them and how to select the most optimal candidate offloading site among others. To overcome the aforementioned challenges, this research work contributes the design and implementation of MAMoC, a loosely coupled end-to-end mobile computation offloading framework. Mobile applications can be adapted to the client library of the framework while the server components are deployed to the offloading sites for serving offloading requests. The evaluation of the offloading decision engine demonstrates the viability of the proposed solution for managing seamless and transparent offloading in distributed and dynamic mobile cloud environments. All the implemented components of this work are publicly available at the following URL: https://github.com/mamoc-repo

    Multi-Criteria Decision Making in Complex Decision Environments

    Get PDF
    In the future, many decisions will either be fully automated or supported by autonomous system. Consequently, it is of high importance that we understand how to integrate human preferences correctly. This dissertation dives into the research field of multi-criteria decision making and investigates the satellite image acquisition scheduling problem and the unmanned aerial vehicle routing problem to further the research on a priori preference integration frameworks. The work will aid in the transition towards autonomous decision making in complex decision environments. A discussion on the future of pairwise and setwise preference articulation methods is also undertaken. "Simply put, a direct consequence of the improved decision-making methods is,that bad decisions more clearly will stand out as what they are - bad decisions.

    A service broker for Intercloud computing

    Get PDF
    This thesis aims at assisting users in finding the most suitable Cloud resources taking into account their functional and non-functional SLA requirements. A key feature of the work is a Cloud service broker acting as mediator between consumers and Clouds. The research involves the implementation and evaluation of two SLA-aware match-making algorithms by use of a simulation environment. The work investigates also the optimal deployment of Multi-Cloud workflows on Intercloud environments

    Security based partner selection in Inter-organizational workflow systems

    Get PDF
    The creation of inter-organizational workflow implies the coalition of partners' efforts and resources in order to achieve a set of common objectives and goals. However, this openness may cause a huge damage to the participating entities due to security breaches. The risk of unsuccessful collaboration should be well studied. Thus, the key for successful collaboration is to select the appropriate collaborators based on specific security criteria for each outsourced task. In this sense, several criteria have to be considered, among them: trust and reputation level, policy similarity level, security level and privacy compliance level. The proposed security based partner selection approach allows us to rank participating entities in the collaboration based on the main security criteria in order to assign each task to the suitable partner with the most appropriate and efficient way

    Toward a More Accurate Web Service Selection Using Modified Interval DEA Models with Undesirable Outputs

    Get PDF
    With the growing number of Web services on the internet, there is a challenge to select the best Web service which can offer more quality-of-service (QoS) values at the lowest price. Another challenge is the uncertainty of QoS values over time due to the unpredictable nature of the internet. In this paper, we modify the interval data envelopment analysis (DEA) models [Wang, Greatbanks and Yang (2005)] for QoS-aware Web service selection considering the uncertainty of QoS attributes in the presence of desirable and undesirable factors. We conduct a set of experiments using a synthesized dataset to show the capabilities of the proposed models. The experimental results show that the correlation between the proposed models and the interval DEA models is significant. Also, the proposed models provide almost robust results and represent more stable behavior than the interval DEA models against QoS variations. Finally, we demonstrate the usefulness of the proposed models for QoS-aware Web service composition. Experimental results indicate that the proposed models significantly improve the fitness of the resultant compositions when they filter out unsatisfactory candidate services for each abstract service in the preprocessing phase. These models help users to select the best possible cloud service considering the dynamic internet environment and they help service providers to improve their Web services in the marke
    corecore