437 research outputs found

    Asymptotic Stability of POD based Model Predictive Control for a semilinear parabolic PDE

    Get PDF
    In this article a stabilizing feedback control is computed for a semilinear parabolic partial differential equation utilizing a nonlinear model predictive (NMPC) method. In each level of the NMPC algorithm the finite time horizon open loop problem is solved by a reduced-order strategy based on proper orthogonal decomposition (POD). A stability analysis is derived for the combined POD-NMPC algorithm so that the lengths of the finite time horizons are chosen in order to ensure the asymptotic stability of the computed feedback controls. The proposed method is successfully tested by numerical examples

    Second order optimality conditions and their role in PDE control

    Get PDF
    If f : Rn R is twice continuously differentiable, f’(u) = 0 and f’’(u) is positive definite, then u is a local minimizer of f. This paper surveys the extension of this well known second order suffcient optimality condition to the case f : U R, where U is an infinite-dimensional linear normed space. The reader will be guided from the case of finite-dimensions via a brief discussion of the calculus of variations and the optimal control of ordinary differential equations to the control of nonlinear partial differential equations, where U is a function space. In particular, the following questions will be addressed: Is the extension to infinite dimensions straightforward or will unexpected difficulties occur? How second order sufficient optimality conditions must be modified, if simple inequality constraints are imposed on u? Why do we need second order conditions and how can they be applied? If they are important, are we able to check if they are fulfilled order sufficient optimality condition to the case f : U R, where U is an infinite-dimensional linear normed space. The reader will be guided from the case of finite-dimensions via a brief discussion of the calculus of variations and the optimal control of ordinary differential equations to the control of nonlinear partial differential equations, where U is a function space. In particular, the following questions will be addressed: Is the extension to infinite dimensions straightforward or will unexpected difficulties occur? How second order sufficient optimality conditions must be modified, if simple inequality constraints are imposed on u? Why do we need second order conditions and how can they be applied? If they are important, are we able to check if they are fulfilled? It turns out that infinite dimensions cause new difficulties that do not occur in finite dimensions. We will be faced with the surprising fact that the space, where f’’(u) exists can be useless to ensure positive definiteness of the quadratic form v f’’(u)v2. In this context, the famous two-norm discrepancy, its consequences, and techniques for overcoming this difficulty are explained. To keep the presentation simple, the theory is developed for problems in function spaces with simple box constraints of the form a = u = ß. The theory of second order conditions in the control of partial differential equations is presented exemplarily for the nonlinear heat equation. Different types of critical cones are introduced, where the positivity of f’’(u) must be required. Their form depends on whether a so-called Tikhonov regularization term is part of the functional f or not. In this context, the paper contains also new results that lead to quadratic growth conditions in the strong sense. As a first application of second-order sufficient conditions, the stability of optimal solutions with respect to perturbations of the data of the control problem is discussed. Second, their use in analyzing the discretization of control problems by finite elements is studied. A survey on further related topics, open questions, and relevant literature concludes the paper.The first author was partially supported by the Spanish Ministerio de Economía y Competitividad under project MTM2011-22711, the second author by DFG in the framework of the Collaborative Research Center SFB 910, project B6

    Optimal Control of Convective FitzHugh-Nagumo Equation

    Get PDF
    We investigate smooth and sparse optimal control problems for convective FitzHugh-Nagumo equation with travelling wave solutions in moving excitable media. The cost function includes distributed space-time and terminal observations or targets. The state and adjoint equations are discretized in space by symmetric interior point Galerkin (SIPG) method and by backward Euler method in time. Several numerical results are presented for the control of the travelling waves. We also show numerically the validity of the second order optimality conditions for the local solutions of the sparse optimal control problem for vanishing Tikhonov regularization parameter. Further, we estimate the distance between the discrete control and associated local optima numerically by the help of the perturbation method and the smallest eigenvalue of the reduced Hessian

    Reduced Order Optimal Control of the Convective FitzHugh-Nagumo Equation

    Full text link
    In this paper, we compare three model order reduction methods: the proper orthogonal decomposition (POD), discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) for the optimal control of the convective FitzHugh-Nagumo (FHN) equations. The convective FHN equations consists of the semi-linear activator and the linear inhibitor equations, modeling blood coagulation in moving excitable media. The semilinear activator equation leads to a non-convex optimal control problem (OCP). The most commonly used method in reduced optimal control is POD. We use DEIM and DMD to approximate efficiently the nonlinear terms in reduced order models. We compare the accuracy and computational times of three reduced-order optimal control solutions with the full order discontinuous Galerkin finite element solution of the convection dominated FHN equations with terminal controls. Numerical results show that POD is the most accurate whereas POD-DMD is the fastest

    Adaptive Semidiscrete Finite Element Methods for Semilinear Parabolic Integrodifferential Optimal Control Problem with Control Constraint

    Get PDF
    The aim of this work is to study the semidiscrete finite element discretization for a class of semilinear parabolic integrodifferential optimal control problems. We derive a posteriori error estimates in L2(J;L2(Ω))-norm and L2(J;H1(Ω))-norm for both the control and coupled state approximations. Such estimates can be used to construct reliable adaptive finite element approximation for semilinear parabolic integrodifferential optimal control problem. Furthermore, we introduce an adaptive algorithm to guide the mesh refinement. Finally, a numerical example is given to demonstrate the theoretical results
    • …
    corecore