1,384 research outputs found

    On the Gold Standard for Security of Universal Steganography

    Get PDF
    While symmetric-key steganography is quite well understood both in the information-theoretic and in the computational setting, many fundamental questions about its public-key counterpart resist persistent attempts to solve them. The computational model for public-key steganography was proposed by von Ahn and Hopper in EUROCRYPT 2004. At TCC 2005, Backes and Cachin gave the first universal public-key stegosystem - i.e. one that works on all channels - achieving security against replayable chosen-covertext attacks (SS-RCCA) and asked whether security against non-replayable chosen-covertext attacks (SS-CCA) is achievable. Later, Hopper (ICALP 2005) provided such a stegosystem for every efficiently sampleable channel, but did not achieve universality. He posed the question whether universality and SS-CCA-security can be achieved simultaneously. No progress on this question has been achieved since more than a decade. In our work we solve Hopper's problem in a somehow complete manner: As our main positive result we design an SS-CCA-secure stegosystem that works for every memoryless channel. On the other hand, we prove that this result is the best possible in the context of universal steganography. We provide a family of 0-memoryless channels - where the already sent documents have only marginal influence on the current distribution - and prove that no SS-CCA-secure steganography for this family exists in the standard non-look-ahead model.Comment: EUROCRYPT 2018, llncs styl

    Simulating Auxiliary Inputs, Revisited

    Get PDF
    For any pair (X,Z)(X,Z) of correlated random variables we can think of ZZ as a randomized function of XX. Provided that ZZ is short, one can make this function computationally efficient by allowing it to be only approximately correct. In folklore this problem is known as \emph{simulating auxiliary inputs}. This idea of simulating auxiliary information turns out to be a powerful tool in computer science, finding applications in complexity theory, cryptography, pseudorandomness and zero-knowledge. In this paper we revisit this problem, achieving the following results: \begin{enumerate}[(a)] We discuss and compare efficiency of known results, finding the flaw in the best known bound claimed in the TCC'14 paper "How to Fake Auxiliary Inputs". We present a novel boosting algorithm for constructing the simulator. Our technique essentially fixes the flaw. This boosting proof is of independent interest, as it shows how to handle "negative mass" issues when constructing probability measures in descent algorithms. Our bounds are much better than bounds known so far. To make the simulator (s,ϵ)(s,\epsilon)-indistinguishable we need the complexity O(s⋅25ℓϵ−2)O\left(s\cdot 2^{5\ell}\epsilon^{-2}\right) in time/circuit size, which is better by a factor ϵ−2\epsilon^{-2} compared to previous bounds. In particular, with our technique we (finally) get meaningful provable security for the EUROCRYPT'09 leakage-resilient stream cipher instantiated with a standard 256-bit block cipher, like AES256\mathsf{AES256}.Comment: Some typos present in the previous version have been correcte

    Adversarially Robust Property-Preserving Hash Functions

    Get PDF
    Property-preserving hashing is a method of compressing a large input x into a short hash h(x) in such a way that given h(x) and h(y), one can compute a property P(x, y) of the original inputs. The idea of property-preserving hash functions underlies sketching, compressed sensing and locality-sensitive hashing. Property-preserving hash functions are usually probabilistic: they use the random choice of a hash function from a family to achieve compression, and as a consequence, err on some inputs. Traditionally, the notion of correctness for these hash functions requires that for every two inputs x and y, the probability that h(x) and h(y) mislead us into a wrong prediction of P(x, y) is negligible. As observed in many recent works (incl. Mironov, Naor and Segev, STOC 2008; Hardt and Woodruff, STOC 2013; Naor and Yogev, CRYPTO 2015), such a correctness guarantee assumes that the adversary (who produces the offending inputs) has no information about the hash function, and is too weak in many scenarios. We initiate the study of adversarial robustness for property-preserving hash functions, provide definitions, derive broad lower bounds due to a simple connection with communication complexity, and show the necessity of computational assumptions to construct such functions. Our main positive results are two candidate constructions of property-preserving hash functions (achieving different parameters) for the (promise) gap-Hamming property which checks if x and y are "too far" or "too close". Our first construction relies on generic collision-resistant hash functions, and our second on a variant of the syndrome decoding assumption on low-density parity check codes

    On Generic Constructions of Circularly-Secure, Leakage-Resilient Public-Key Encryption Schemes

    Get PDF
    Abstract. We propose generic constructions of public-key encryption schemes, satisfying key- dependent message (KDM) security for projections and different forms of key-leakage resilience, from CPA-secure private key encryption schemes with two main abstract properties: (1) additive homomorphism with respect to both messages and randomness, and (2) reproducibility, providing a means for reusing encryption randomness across independent secret keys. More precisely, our construction transforms a private-key scheme with the stated properties (and one more mild condition) into a public-key one, providing: - n-KDM-projection security, an extension of circular security, where the adversary may also ask for encryptions of negated secret key bits; – a (1-o(1)) resilience rate in the bounded-memory leakage model of Akavia et al. (TCC 2009); and – Auxiliary-input security against subexponentially-hard functions. We introduce homomorphic weak pseudorandom functions, a homomorphic version of the weak PRFs proposed by Naor and Reingold (FOCS ’95) and use them to realize our base encryption scheme. We obtain homomorphic weak PRFs under assumptions including subgroup indistinguishability (implied, in particular, by QR and DCR) and homomorphic hash-proof systems (HHPS). As corollaries of our results, we obtain (1) a projection-secure encryption scheme (as well as a scheme with a (1-o(1)) resilience rate) based solely on the HHPS assumption, and (2) a unifying approach explaining the results of Boneh et al (CRYPTO ’08) and Brakerski and Goldwasser (CRYPTO ’10). Finally, by observing that Applebaum’s KDM amplification method (EUROCRYPT ’11) preserves both types of leakage resilience, we obtain schemes providing at the same time high leakage resilience and KDM security against any fixed polynomial-sized circuit family

    Asynchronous Probabilistic Couplings in Higher-Order Separation Logic

    Full text link
    Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when relating random sampling statements across two programs. In relational program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value. However, this approach fundamentally requires aligning or "synchronizing" the sampling statements of the two programs which is not always possible. In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed logical relational to reason about contextual refinement and equivalence of higher-order programs written in a rich language with higher-order local state and impredicative polymorphism. Finally, we demonstrate the usefulness of our approach on a number of case studies. All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot library and the Iris separation logic framework
    • …
    corecore