5,467 research outputs found

    A Primer on Reproducing Kernel Hilbert Spaces

    Full text link
    Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.Comment: Revised version submitted to Foundations and Trends in Signal Processin

    Representation and Characterization of Non-Stationary Processes by Dilation Operators and Induced Shape Space Manifolds

    Full text link
    We have introduce a new vision of stochastic processes through the geometry induced by the dilation. The dilation matrices of a given processes are obtained by a composition of rotations matrices, contain the measure information in a condensed way. Particularly interesting is the fact that the obtention of dilation matrices is regardless of the stationarity of the underlying process. When the process is stationary, it coincides with the Naimark Dilation and only one rotation matrix is computed, when the process is non-stationary, a set of rotation matrices are computed. In particular, the periodicity of the correlation function that may appear in some classes of signal is transmitted to the set of dilation matrices. These rotation matrices, which can be arbitrarily close to each other depending on the sampling or the rescaling of the signal are seen as a distinctive feature of the signal. In order to study this sequence of matrices, and guided by the possibility to rescale the signal, the correct geometrical framework to use with the dilation's theoretic results is the space of curves on manifolds, that is the set of all curve that lies on a base manifold. To give a complete sight about the space of curve, a metric and the derived geodesic equation are provided. The general results are adapted to the more specific case where the base manifold is the Lie group of rotation matrices. The notion of the shape of a curve can be formalized as the set of equivalence classes of curves given by the quotient space of the space of curves and the increasing diffeomorphisms. The metric in the space of curve naturally extent to the space of shapes and enable comparison between shapes.Comment: 19 pages, draft pape

    Life-Space Foam: a Medium for Motivational and Cognitive Dynamics

    Full text link
    General stochastic dynamics, developed in a framework of Feynman path integrals, have been applied to Lewinian field--theoretic psychodynamics, resulting in the development of a new concept of life--space foam (LSF) as a natural medium for motivational and cognitive psychodynamics. According to LSF formalisms, the classic Lewinian life space can be macroscopically represented as a smooth manifold with steady force-fields and behavioral paths, while at the microscopic level it is more realistically represented as a collection of wildly fluctuating force-fields, (loco)motion paths and local geometries (and topologies with holes). A set of least-action principles is used to model the smoothness of global, macro-level LSF paths, fields and geometry. To model the corresponding local, micro-level LSF structures, an adaptive path integral is used, defining a multi-phase and multi-path (multi-field and multi-geometry) transition process from intention to goal-driven action. Application examples of this new approach include (but are not limited to) information processing, motivational fatigue, learning, memory and decision-making.Comment: 25 pages, 2 figures, elsar

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Information-geometric Markov Chain Monte Carlo methods using Diffusions

    Get PDF
    Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond Statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for Statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. After this geometric concepts in Markov chain Monte Carlo are introduced. A full derivation of the Langevin diffusion on a Riemannian manifold is given, together with a discussion of appropriate Riemannian metric choice for different problems. A survey of applications is provided, and some open questions are discussed.Comment: 22 pages, 2 figure
    corecore