16,311 research outputs found

    How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables

    Get PDF
    Given that an effect size of d = .4 is a good first estimate of the smallest effect size of interest in psychological research, we already need over 50 participants for a simple comparison of two within-participants conditions if we want to run a study with 80% power. This is more than current practice. In addition, as soon as a between-groups variable or an interaction is involved, numbers of 100, 200, and even more participants are needed. As long as we do not accept these facts, we will keep on running underpowered studies with unclear results. Addressing the issue requires a change in the way research is evaluated by supervisors, examiners, reviewers, and editors. The present paper describes reference numbers needed for the designs most often used by psychologists, including single-variable between-groups and repeated-measures designs with two and three levels, two-factor designs involving two repeated-measures variables or one between-groups variable and one repeated-measures variable (split-plot design). The numbers are given for the traditional, frequentist analysis with p 10. These numbers provide researchers with a standard to determine (and justify) the sample size of an upcoming study. The article also describes how researchers can improve the power of their study by including multiple observations per condition per participant

    Species abundance information improves sequence taxonomy classification accuracy.

    Get PDF
    Popular naive Bayes taxonomic classifiers for amplicon sequences assume that all species in the reference database are equally likely to be observed. We demonstrate that classification accuracy degrades linearly with the degree to which that assumption is violated, and in practice it is always violated. By incorporating environment-specific taxonomic abundance information, we demonstrate a significant increase in the species-level classification accuracy across common sample types. At the species level, overall average error rates decline from 25% to 14%, which is favourably comparable to the error rates that existing classifiers achieve at the genus level (16%). Our findings indicate that for most practical purposes, the assumption that reference species are equally likely to be observed is untenable. q2-clawback provides a straightforward alternative for samples from common environments

    Is There Selection Bias in Laboratory Experiments?*

    Get PDF
    Do the social and risk preferences of participants in laboratory experiments represent the preferences of the population from which they are recruited? To answer this question, we conducted a classroom experiment with a population of 1,173 students using a trust game and a lottery choice task to measure individual preferences. Separately, all 1,173 students were invited to participate in a laboratory experiment. To determine whether selection bias exists, we compare the preferences of the individuals who eventually participated in a laboratory experiment to those in the population. We find that the social and risk preferences of the students participating in the laboratory experiment are not significantly different from the preferences of the population from which they were recruited. We further show that participation decisions across most subgroups (e.g., men vs. women) do not differ significantly. We therefore fail to find selection bias based on social and risk preferences.external validity; social preferences; selection bias; laboratory experiments; risk preferences

    Bayesian Hierarchical Modelling for Tailoring Metric Thresholds

    Full text link
    Software is highly contextual. While there are cross-cutting `global' lessons, individual software projects exhibit many `local' properties. This data heterogeneity makes drawing local conclusions from global data dangerous. A key research challenge is to construct locally accurate prediction models that are informed by global characteristics and data volumes. Previous work has tackled this problem using clustering and transfer learning approaches, which identify locally similar characteristics. This paper applies a simpler approach known as Bayesian hierarchical modeling. We show that hierarchical modeling supports cross-project comparisons, while preserving local context. To demonstrate the approach, we conduct a conceptual replication of an existing study on setting software metrics thresholds. Our emerging results show our hierarchical model reduces model prediction error compared to a global approach by up to 50%.Comment: Short paper, published at MSR '18: 15th International Conference on Mining Software Repositories May 28--29, 2018, Gothenburg, Swede
    • …
    corecore